Polyspace® Bug Finder™

Reference

R2013b

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

September 2013 Online only New for Version 1.0 (Release 2013b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Reference Concepts

Bug Finder Defect Categories 1-2
Numerical 1-2
Static Memoryuuiiiiiiiii i 1-2
Dynamic Memoryc.oiiiiiiniiieeennnnnnnnn. 1-3
Programming 1-3
Data-flow i e 1-3
Other e e 1-3

2

Batch e 2-3
SIS e e 2-3
Command-Line Information 2-3

Add to results repository, 2-4
SIS e e 2-4
Dependencyciiiiiii 2-4
Command-Line Information 2-4

Other i i e i i 2-5
-extra-flags ... 2-5
-Cc-extra-flagsiiiii e 2-5
-cfe-extra-flagsc.oii i 2-6
-il-extra-flags ... e e 2-6

Target operating system 2-7

Target processortypecciiiuunnn.. 2-8

iii

iv

Contents

Generic targetoptions 2-10

dittle-endian ... e 2-10
big-endian ... e 2-11
-default-sign-of-char [signed |unsigned] 2-11
schar-1s-16bits ... oot e 2-12
-Short-18-8bits .. i e 2-12
ANt-18-32DIES L e 2-13
-long-long-is-64bits 2-13
-double-1s-64bits e 2-13
-pointer-18-32bits e 2-15
Salign [8116132] vvvi i 2-15
Dialect e 2-17
SN S ottt e 2-17
TIPS vttt 2-17
Command-Line Information 2-18
See AlSO v e 2-18
Sfr type support 2-19
Divisionrounddown 2-20
Enum type definition 2-21
Signed rightshift 2-22
Preprocessor definitions 2-23
Undefined preprocessor definitions 2-24
Code from DOS or Windows file system 2-25
Command/script to apply to preprocessed files 2-26
Include e 2-28
Multitasking 2-29

Entrypoints 2-30

Critical sectiondetails 2-31
Temporally exclusive tasks 2-32
MISRA C rules configuration 2-33
MISRA AC AGC rules configuration 2-35
Check customrules 2-37
Files and folderstoignore 2-38
Effective booleantypes 2-39
Allowed pragmasiiiiiinnnnneennnn. 2-40

Command/script to apply after the end of the code

analysis 2-41
Generatereportt 2-42
SIS oottt e 2-42
Report templatename 2-43
SIS oottt e 2-43
4 5 o 2-43
Command-Line Information 2-43
Outputformat 2-44
SIS oottt e 2-44
Command-Line Information 2-45
Finddefects 2-46
SIS oottt e 2-46

Command-Line Information 2-47

vi

Contents

Option Descriptions for C++ Code

3

Other i i e i 3-3
-cpp-extra-flagsflag, 3-3
-l-extra-flagsflag 3-3

Target processortypecciiiuunnnn. 3-5

Generic targetoptions, 3-6
dittle-endian ... 3-7
big-endian ... 3-7
-default-sign-of-char [signed |unsigned] 3-7
-char-is-16bits 3-8
-short-is-8bits 3-8
Ant-1s-32bits L. e 3-9
-long-long-is-64bits 3-9
-double-is-64bits e 3-10
-pointer-is-32bits 3-11
-align [8116132] ..ot 3-11

Dialect e 3-13

Pack alignmentvalue 3-15

Importfolder 3-16

Ignore pragma pack directives 3-17

Support managed extensions 3-18

Enum type definition 3-19

Management of scope of ’for loop’ variable index 3-20

Managementofw_char_t 3-21

Set wchar_t to unsignedlong 3-22

Set size_t to unsignedlong 3-23

Overcome link error 3-24
Mainentry point0 ittt 3-25
Entrypoints 3-26
Critical sectiondetails 3-27
Check MISRA C++rules 3-28
MISRA C++ rules configuration 3-29
Check JSF Ct++rules 3-31
JSF C++ rules configuration 3-32
Files and folderstoignore 3-34

Command Line Only Options

q

-sources-list-file, 4-3
SV | mVerSIoNn L. e e 4-4
ShleIp] . e e 4-5
R+« X 4-6

SIS oottt e 4-6

Command-Line Information, 4-6
mdate L e e e 4-7

vii

SN S oottt e 4-7

4 5 o 4-7
Command-Line Information 4-7
S I 1 4-8
SN S oottt e 4-8
Command-Line Information 4-8
—aUthOr L e 4-9
St gS oottt e 4-9
Command-Line Information 4-9
-results-dir e 4-10
X 0 - 4-11
N 4-13
-import-comments e 4-14
-tmp-dir-in-results-dir 4-15
-less-range-information 4-16
-no-pointer-information, 4-17
-asm-begin -asm-end i, 4-18
SPerMAiSSiVe e 4-19
T 4-20
-report-output-name, 4-21
SIS o ittt e 4-21
Command-Line Information 4-21
SMAX=PrOCESSES . ittt e e e 4-22

viii Contents

Command-Line Information 4-22

-scheduler i e 4-23
Command-Line Information v ... 4-23
Checks

Functions

6

ix

X Contents

Reference Concepts

1 Reference Concepts

Bug Finder Defect Categories

In this section...

“Numerical” on page 1-2
“Static Memory” on page 1-2
“Dynamic Memory” on page 1-3
“Programming” on page 1-3

“Data-flow” on page 1-3

“Other” on page 1-3

Numerical

These defects are errors relating to variables in your code; their values, data
types, and usage. The defects include:

e Mathematical operations

¢ Conversion overflow

® QOperational overflow
For specific defects, see “Numerical Defects”.

Static Memory

These defects are errors relating to memory usage when the memory is
statically allocated. The defects include:

® Accessing arrays outside their bounds
e Null pointers

e (Casting of pointers

For specific defects, see “Static Memory Defects”.

Bug Finder Defect Categories

Dynamic Memory

These defects are errors relating to memory usage when the memory is
dynamically allocated. The defects include:

® Freeing dynamically allocated memory

® Unprotected memory allocations
For specific defects, see “Dynamic Memory Defects”.

Programming

These defects are errors relating to programming syntax. These defects
include:

® Assignment vs. equality operators
* Mismatches between variable qualifiers or declarations

¢ Badly formatted strings
For specific defects, see “Programming Defects”

Data-flow

These defects are errors relating to how information moves throughout your
code. The defects include:

® Dead or unreachable code
® Unused code

® Non-initialized information
For the specific defects, see “Data-flow Defects”.

Other

These defects are those that do not fit into any of the other categories. They
can be anything from race conditions to pass-by-value errors.

For specific defects, see “Other Defects”.

1-3

1 Reference Concepts

Option Descriptions for C
Code

® “Batch” on page 2-3

® “Add to results repository” on page 2-4

® “Other” on page 2-5

® “Target operating system” on page 2-7

® “Target processor type” on page 2-8

® “Generic target options” on page 2-10

e “Dialect” on page 2-17

® “Sfr type support” on page 2-19

® “Division round down” on page 2-20

¢ “Enum type definition” on page 2-21

* “Signed right shift” on page 2-22

® “Preprocessor definitions” on page 2-23

¢ “Undefined preprocessor definitions” on page 2-24

® “Code from DOS or Windows file system” on page 2-25
e “Command/script to apply to preprocessed files” on page 2-26
® “Include” on page 2-28

e “Multitasking” on page 2-29

e “Entry points” on page 2-30

e “Critical section details” on page 2-31

2 Option Descriptions for C Code

* “Temporally exclusive tasks” on page 2-32

e “MISRA C rules configuration” on page 2-33

e “MISRA AC AGC rules configuration” on page 2-35
® “Check custom rules” on page 2-37

e “Files and folders to ignore” on page 2-38

e “Effective boolean types” on page 2-39

e “Allowed pragmas” on page 2-40

e “Command/script to apply after the end of the code analysis” on page 2-41
® “Generate report” on page 2-42

e “Report template name” on page 2-43

® “Output format” on page 2-44

* “Find defects” on page 2-46

Batch

Batch

Specify remote analysis.

Settings
Default: Off

On, select the check box
Run analysis remotely.

Off, clear the check box
Run analysis locally.

Command-Line Information
At the command line, use with the -scheduler option

Parameter: -batch

Value: analysis options

Example: polyspace-bug-finder-nodesktop -batch
analysis_options ...

2 Option Descriptions for C Code

Add to results repository

Specify addition of analysis results to the Polyspace® Metrics results
repository, which allows Web-based reporting of results and code metrics.

Settings
Default: Off

On, select the check box
Analysis results are stored in the Polyspace Metrics results repository.
This allows you to use a Web browser to view results and code metrics.

Off, clear the check box
Analysis results are not stored in the results repository.

Dependency
¢ This option is available only for remote analyses.

Command-Line Information

Parameter: -add-to-results-repository
Example: polyspace-code-prover-nodesktop -batch
-add-to-results-repository

Other

Other

In this section...

“-extra-flags” on page 2-5
“-c-extra-flags” on page 2-5

“-cfe-extra-flags” on page 2-6

“-il-extra-flags” on page 2-6

-extra-flags
This dialog box is for adding nonofficial or expert options to the analyzer. Each
word of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by MathWorks® if required.
Default:

No extra flags.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -extra-flags -parami -extra-flags
-param2 \

-extra-flags 10 ...
-c-extra-flags
This option is used to specify an expert option to be added to an analysis. Each
word of the option (even the parameters) must be preceded by -c-extra-flags.
These flags will be given to you by MathWorks if required.

Default:

No extra flags.

2 Option Descriptions for C Code

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -c-extra-flags -parami
-c-extra-flags -param2 -c-extra-flags 10

-cfe-extra-flags

This option is used to specify an expert option for an analysis.
These flags will be given to you by MathWorks if required.
Default:

No extra flags.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -cfe-extra-flags -parami
-cfe-extra-flags -param2

-il-extra-flags

This option is used to specify an expert option to be added to an analysis. Each
word of the option (even the parameters) must be preceded by -il-extra-flags.
These flags will be given to you by MathWorks if required.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -il-extra-flags -parami
-il-extra-flags -param2 -il-extra-flags 10

Target operating system

Ta rgei' operai'ing sysi'em
This option specifies the operating system target for your application.
Possible values are:

® Linux

® Solaris

® VxWorks

® Visual

® no-predefined-0S (default)

This information allows the corresponding system definitions to be used
during preprocessing — to analyze the included files properly.

You can use the target no-predefined-0S in conjunction with -include
or/and -D to give all of the system preprocessor flags to be used at execution
time. Details of these may be found by executing the compiler for the project
in verbose mode.

Default:

no-predefined-0S

Note Only the Linux® include files are provided with Polyspace software (see
the include folder in the installation directory). Projects developed for use
with other operating systems may be analyzed by using the corresponding
include files for that operating system. For instance, in order to analyze a
VxWorks® project, use the option -I path_to the VxWorks_include folder

Example shell script entry:
polyspace-bug-finder-nodesktop -0S-target linux

polyspace-bug-finder-nodesktop -0S-target no-predefined-0S
-D GCC_MAJOR=2 -include /complete_path/inc/gn.h

2-7

2 Option Descriptions for C Code

Target processor type
This option specifies the target processor type, and in doing so informs the
analysis of the size of fundamental data types and of the endianess of the

target machine.

Possible values are:

1386 (default)
® sparc

®* m68k

® powerpc

® c-167

® tms320c3x

® sharc21x61

® necv850

® hc08

® hci2

® mpc5xx

® ci18

* x86_64

® mcpu...(Advanced)

mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use
this type to configure one or more generic targets.

You can analyze code intended for an unlisted processor type using one of the
other processor types, if they share common data properties.

For information on specifying a generic target, or modifying the mcpu target,
see “Generic target options” on page 2-10.

Default:

2-8

Target processor type

1386
Example shell script entry:

polyspace-bug-finder-nodesktop -target m68k

2-9

2 Option Descriptions for C Code

2-10

Generic target options

The Generic target options dialog box 1s only available when you select a
mcpu target.

Allows the specification of a generic "Micro Controller/Processor Unit" or
mcpu target name. Initially, use the dialog box to specify the name of a new
mcpu target — say, “MyTarget”.

That new target is added to the -target options list. The default
characteristics of the new target are as follows (using the type [size, alignment]
format)

char [8, 8, char [16,16]]

® short [8,8], short [16, 16]

* int [16, 16]

® Jong [32, 32], long long [32, 32]

® float [32, 32], double [32, 32], long double [32, 32]
® pointer [16, 16]

® char is signed

o little-endian

When using the command line, MyTarget is specified with all the options
for modification:

polyspace-bug-finder-nodesktop -target MyTarget

For example, a specific target uses 8 bit alignment (see also -align), for which
the command line would read:

polyspace-bug-finder-nodesktop -target mcpu -align 8

-little-endian

This option 1s only available when a -mcpu generic target has been chosen.

Generic target options

The endianness defines the byte order within a word (and the word order
within a long integer). Little-endian architectures are Less Significant byte
First (LSF), for example: 1386.

For a little endian target, the less significant byte of a short integer (for
example 0xO0FF) is stored at the first byte (0xFF) and the most significant
byte (0x00) at the second byte.

Example shell script entry:

polyspace-bug-finder-nodesktop -target mcpu -little-endian

-big-endian
This option 1s only available when a -mcpu generic target has been chosen.
The endianness defines the byte order within a word (and the word order

within a long integer). Big-endian architectures are Most Significant byte
First (MSF), for example: SPARC, m68k.

For a big endian target, the most significant byte of a short integer (for
example 0xO0FF) is stored at the first byte (0x00) and the less significant
byte (0xFF) at the second byte.

Example shell script entry:

polyspace-bug-finder-nodesktop -target mcpu -big-endian

-default-sign-of-char [signed | unsigned]
This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

¢ default mode — The sign of char is left to assume the target’s default
behavior. By default all targets are considered as signed except for hc08
and powerpc targets.

® signed — Disregards the target’s default char definition, and specifies that
a "signed char" should be used.

2-11

2 Option Descriptions for C Code

2-12

* unsigned - Disregards the target’s default char definition, and specifies
that a "unsigned char" should be used.

Example Shell Script Entry

polyspace-bug-finder-nodesktop -default-sign-of-char unsigned
-target mcpu

-char-is-16bits
This option is only available when a -mcpu generic target has been chosen.

The default configuration of a generic target defines a char as 8 bits. This
option changes it to 16 bits, regardless of sign.

the minimum alignment of objects 1s also set to 16 bits and so, incompatible
with the options -short-is-8bits and -align 8.

Setting the char type to 16 bits has consequences on the following:

e computation of size of for objects

¢ detection of underflow and overflow on chars

Without the option char for mcpu are 8 bits

Example shell script entry:

polyspace-bug-finder-nodesktop -target mcpu -char-is-16bits
-short-is-8bits

This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, regardless of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

Generic target options

® computation of size of objects referencing short type

e detection of short underflow/overflow
Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -short-is-8bits
-int-is-32bits

This option is available with a mcpu generic target, hc08, hc12 and mpcbxx
target has been chosen.

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, regardless of sign. Its alignment, when an int
1s used as struct member or array component, is also set to 32 bits. See also
-align option.
Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -int-is-32bits
-long-long-is-64bits
This option is only available when a mcpu generic target has been chosen.
The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, regardless of sign. When a long long is
used as struct member or array component, its alignment is also set to 64
bits. See also -align option.
Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -long-long-is-64bits
-double-is-64bits

The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or

2-13

2 Option Descriptions for C Code

long double is used as a struct member or array component, its alignment
1s set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:
e Computation of sizeof objects referencing double type

® Detection of floating point underflow/overflow
This option is available for the following targets:

® mcpu generic target
sharc21x61

hc08

hc12

® mpchxx
Example

int main(void)

{

struct S {char x; double f;};

double x;

unsigned s1, s2;

s sizeof (double);

s2 sizeof(struct S);

X = 3.402823466E+38; /*IEEE 32 bits float point maximum value*/
X = X * 2;

return 0O;

Using the default configuration of sharc21x62, Polyspace analysis assumes
that a value of 1 i1s assigned to s1, 2 is assigned to s2, and there is

a consequential float overflow in the multiplication x * 2. Using the
-double-is-64bits option, a value of 2 i1s assigned to s1, and no overflow occurs

2-14

Generic target options

in the multiplication (because the result is in the range of the 64-bit floating
point type)

Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu
-double-is-64bits

-pointer-is-32bits

This option is only available when a mcpu generic target has been chosen.

The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or
array component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -pointer-is-32bits

-align [8]16]32]

This option is available with a mcpu generic target and some other specific
targets (with hc08, hc12 or mpc5xx available values are 16 and 32). It is used
to set the largest alignment of all data objects to 4/2/1 byte(s), meaning a

32, 16 or 8 bit boundary respectively.

-align 32 (Default)

The default alignment of a generic target is 32 bits. This means that when
objects with a size of more than 4 bytes are used as struct members or array
components, they are aligned at 4 byte boundaries.

Example shell script entry with a 32 bits default alignment
polyspace-bug-finder-nodesktop -target mcpu

2-15

2 Option Descriptions for C Code

2-16

-align 16
If the -align 16 option is used, when objects with a size of more than 2 bytes
are used as struct members or array components, they are aligned at 2 bytes
boundaries.

Example shell script entry with a 16 bits specific alignment:
polyspace-bug-finder-nodesktop -target mcpu -align 16

-align 8

If the -align 8 option is used, when objects with a size of more than 1 byte

are used as struct members or array components, are aligned at 1 byte

boundaries. Consequently the storage assigned to the arrays and structures is

strictly determined by the size of the individual data objects without member

and end padding.

Example shell script entry with a 8 bits specific alignment:

polyspace-bug-finder-nodesktop -target mcpu -align 8

Dialect

Dialect

Specify whether analysis allows syntax associated with the IAR and Keil
dialects.

Settings

Default: none

none
Analysis does not allow non-ANSI® C dialects.

keil
Analysis allows non-ANSI C syntax and semantics associated with the
Keil dialect.

iar
Analysis allows non-ANSI C syntax and semantics associated with the
TAR dialect.

Tips
¢ JAR refers to the compilers from IAR Systems (www.iar.com).

¢ Keil refers to the Keil™ products from ARM (www.keil.com).

® Using this option allows analysis to tolerate additional structure types as
keywords of the language, such as sfr, sbit, and bit. These structures
and associated semantics are part of the compiler that has integrated it
with the ANSI C language as an extension.

Example of source code with Keil dialect:

unsigned char bdata Status[4];
sfr AU = OxFO;

sbit OCmd = Status[0]"2;

s"2 = 1; s76 = 0;

Example with IAR dialect:

unsigned char bdata Status[4];
sfr OCmd @ Ox4FFE;
oCmd.2 = 1; s.6 = 0;

2-17

http://www.iar.com/
http://www.keil.com/

2 Option Descriptions for C Code

Command-Line Information

Parameter: -dialect

Type: string

Value: none | keil | iar

Default: none

Example: polyspace-bug-finder-nodesktop -dialect keil

See Also
“Analyze Keil or TAR Dialects”.

2-18

Sfr type support

Sfr type support
Associated to the option -dialect, if the code uses specific sfr type keyword,
it i1s mandatory to declare using -sfr-types option. It gives the name of the
sfr type and its size in bits. The syntax 1is:

-sfr-types <sfr_name>=<size in bits>,

where <sfr_name> could be any name, but most of the time we encounter sfr,
sfri16 and sfr32 . <size in bits> could be one of the values 8, 16 and 32.

Default:
No dialect used.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -dialect iar -sfr-types
sfr=8,sfr32=32,sfrb=16

2-19

2 Option Descriptions for C Code

2-20

Division round down

This option concerns the division and modulus of a negative number.

The ANSI standard stipulates that "if either operand of / or % is negative,
whether the result of the / operator, is the largest integer less or equal than the
algebraic quotient or the smallest integer greater or equal than the quotient, is
implementation defined, same for the sign of the % operator".

Note a = (a / b) * b + a % b is always true.

Default:
Without the option (default mode), if either operand of / or % is negative,
the result of the / operator is the smallest integer greater or equal than the
algebraic quotient. The result of the % operator is deduced froma % b = a
- (a/ b)y *b
Example:
assert(-5/3 == -1 && -5%3 == -2); istrue.
With the -div-round-down option:
If either operand / or % is negative, the result of the / operator is the largest
integer less or equal than the algebraic quotient. The result of the % operator
is deduced froma % b =a - (a / b) * b .
Example:
assert(-5/3 == -2 && -5%3 == 1); is true.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -div-round-down

Enum type definition

Enum type definition

Allows the analysis to use different base types to represent an enumerated
type, depending on the enumerator values and the selected definition.

When using this option, each enum type is represented by the smallest
integral type that can hold all its enumeration values.

Possible values are:

e signed-int — Uses the integer type

® auto-signed-first - Uses the first type that can hold all of the enumerator
values from the following list: signed char, unsigned char, signed
short, unsigned short, signed int, unsigned int, signed long,
unsigned long, signed long long, unsigned long long.

® auto-unsigned-first - Uses the first type that can hold all of the
enumerator values from the following lists:

= If enumerator values are all positive: unsigned char, unsigned short,
unsigned int, unsigned long, unsigned long long.

= If one or more enumerator values are negative: signed char, signed
short, signed int, signed long, signed long long.

2-21

2 Option Descriptions for C Code

2-22

Signed right shift
Choose between arithmetical and logical computation.

e _ Arithmetic: the sign bit remains:

(-4) >> 1 = -2
(-7) > 1 = -4
7 >1=23

® - Logical: 0 replaces the sign bit

(-4

) = (-4U) >> 1 = 2147483646
(-7)
>

= (-7U) >> 1 = 2147483644
3

>>
>>

N = =

7 >> 1

Example shell script entry

When using the command line, arithmetic is the default computation mode.
When this option is set, logical computation will be performed.

polyspace-bug-finder-nodesktop -logical-signed-right-shift

Preprocessor definitions

Preprocessor definitions
Define macro compiler flags to be used during compilation phase.

You can specify only one flag with each -D option. However, you can specify
the option multiple times.

Default:
Some defines are applied by default, depending on your -0S-target option.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -D HAVE_MYLIB -D USE_COM1

2-23

2 Option Descriptions for C Code

Undefined preprocessor definitions
Undefine macro compiler flags.

You can specify only one flag with each -U option. However, you can specify
the option multiple times.

Default:
Some undefines may be set by default, depending on your -0S-target option.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -U HAVE_MYLIB -U USE_COM1

2-24

Code from DOS or Windows® file system

Code from DOS or Windows file system

Use this option when the contents of the include or source folder comes from
a DOS or Windows® file system. It deals with upper/lower case sensitivity
and control character issues.

The affected files are:

e Header files in all include folders specified through the -I option.

e All source files selected for the analysis through the -sources option.

For example, with this option,

#include "..

#include ".

resolves to:

\mY_TEst.h""M

.\mY_other_FILE.H""M

#include "../my_test.h"
#include "../my_other_file.h"
Default:

Enabled

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -I /usr/include -dos -I

./my_copied_include_dir -D test=1

2-25

2 Option Descriptions for C Code

Command/script to apply to preprocessed files

When this option is used, the specified script file or command is run just

after the preprocessing phase on each source file. The script executes on

each preprocessed c file. The command should be designed to process the
standard output from preprocessing and produce its results in accordance
with that standard output.

Note The Compilation Assistant is automatically disabled when you specify
this option.

You can find each preprocessed file in the results directory in the zipped

file ci.zip located in <results/ALL/SRC/MACROS. The extension of the
preprocessed file is .ci.

It is important to preserve the number of lines in the preprocessed .ci file.
Adding a line or removing one could result in some unpredictable behavior on
the location of checks and MACROS in the Polyspace viewer.

Default:

No command.

Example Shell Script Entry - file name:

To replace the keyword “Volatile” by “Import”, you can type the following
command on a Linux workstation:

polyspace-bug-finder-nodesktop -post-preprocessing-command
“pwd’ /replace_keywords

where replace_keywords is the following script:
#!/usr/bin/perl

my $TOOLS_VERSION = "Vi_4 1";

binmode STDOUT;

Process every line from STDIN until EOF

2-26

Command/script to apply to preprocessed files

while ($line = <STDIN>)

{
Change Volatile to Import
$line =~ s/Volatile/Import/;
print $line;

}

To run the Perl script provided in the previous example on a Windows
workstation, you must use the option -post-preprocessing-command with
the absolute path to the Perl script, for example:

matlabroot\matlab\polyspace\bin\polyspace-bug-finder-nodesktop.exe
-post-preprocessing-command

matlabroot\sys\perl\win32\bin\perl.exe
<absolute_path>\replace_keywords

2-27

2 Option Descriptions for C Code

Include

This option is used to specify files to be included by each C file involved in
the analysis.

Default:

No file is universally included by default, but directives such as "#include
<include_file.h>" are acted upon.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -include “pwd’ /sources/a_file.h
-include /inc/inc_file.h ...

polyspace-bug-finder-nodesktop -include
/the_complete_path/my_defines.h ...

2-28

Multitasking

Multitasking

Select to analyze multitasking code

2-29

2 Option Descriptions for C Code

2-30

Entry points

This option is used to specify the tasks/entry points to be analyzed by the
analysis, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no

parameters, with parameters passed through global variables instead.

Using Polyspace analysis, ¢ tasks must have the prototype "void
task_name(void);".

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -entry-points proci,proc2,proc3

Critical section details

LR [(3

Critical section details
-critical-section-begin "proci:csi[,proc2:cs2]"
and
-critical-section-end "proc3:csi1[,proc4:cs2]"
These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double speech marks, with
list entries separated by commas, and no spaces. Entries in the lists take
the form of the procedure name followed by the name of the critical section,

with a colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Default:
no critical sections.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -critical-section-begin
"start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

2-31

2 Option Descriptions for C Code

Temporally exclusive tasks

This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

¢ one line for each group of temporally excluded tasks,

® on each line, tasks are separated by spaces.

Default:

No temporal exclusions.

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ directory and containing:
task1_group1 task2_groupi
task1_group2 task2_group2 task3_group2

Example Shell Script Entry :

polyspace-bug-finder-nodesktop -temporal-exclusions-file
sources/exclusions \

-entry-points task1_group1,task2_groupl,taski_group2,\

task2_group2,task3_group2 ...

2-32

MISRA C® rules configuration

MISRA C rules configuration
Specifies set of coding rules to check using the -misra2 option.
Available options are:
® required-rules — Check required MISRA C® coding rules. All violations

are reported as warnings.

® all-rules — Check all (required and advisory) MISRA C coding rules. All
violations are reported as warnings.

® SQ0-subset1 — Check a subset of MISRA C rules that have a direct impact
on the selectivity of analysis. All violations are reported as warnings. For
more information, see “SQO Subset 1 — Direct Impact on Selectivity”.

® SQ0-subset2 — Check a second subset of MISRA C rules that have an
indirect impact on the selectivity of analysis, as well as the rules contained
in SQO-subsetl. All violations are reported as warnings. For more
information, see “SQO Subset 2 — Indirect Impact on Selectivity”.

e custom — Check a specified set of coding rules. You must provide the name
of an ASCII file containing a list of MISRA® rules to check.

Format of the custom file:

<rule number> off|error|warning

Use the character # at the start of a comment. For example:

MISRA configuration file for my_project

10.5 off # disable misra rule number 10.5

17.2 error # violation misra rule 17.2 is an error

17.3 warning # violation of misra rule 17.3 is a warning

Default:
all-rules
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -misra2 all-rules ...

2-33

2 Option Descriptions for C Code

polyspace-bug-finder-nodesktop -misra2 SQO-subseti
polyspace-bug-finder-nodesktop -misra2 -custom myrules.txt

polyspace-bug-finder-nodesktop -disable-checkers all -misra2
all-rules

2-34

MISRA® AC AGC rules configuration

MISRA AC AGC rules configuration

Specifies set of coding rules to check.
Available options are:

® OBL-rules — Check coding rules that belong to the OBL (obligatory)
category specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation

® OBL-REC-rules — Check coding rules that belong to the OBL (obligatory)
and REC (recommended) categories specified by MISRA AC AGC
Guidelines for the Application of MISRA-C:2004 in the Context of Automatic
Code Generation

® all-rules — Check all MISRA C coding rules. All violations are reported
as warnings.

® SQ0-subset1 — Check a subset of MISRA C rules that have a direct impact
on the selectivity of analysis. All violations are reported as warnings. For
more information, see “SQO Subset 1 — Direct Impact on Selectivity”

® SQ0-subset2 — Check a second subset of MISRA C rules that have an
indirect impact on the selectivity of analysis, as well as the rules contained
in SQO-subsetl. All violations are reported as warnings. For more
information, see “SQO Subset 2 — Indirect Impact on Selectivity”.

e custom — Check a specified set of coding rules. You must provide the name
of an ASCII file containing a list of MISRA rules to check.

Format of the custom file:

<rule number> off|error|warning

Use the character # at the start of a comment. For example:
MISRA configuration file for my_project

10.5 off # disable misra rule number 10.5

17.2 error # violation misra rule 17.2 is an error
17.3 warning # violation of misra rule 17.3 is a warning

Default:

2-35

2 Option Descriptions for C Code

Disabled

Example Shell Script Entry

polyspace-bug-finder-nodesktop -misra-ac-agc all-rules
polyspace-bug-finder-nodesktop -misra-ac-agc OBL-rules
polyspace-bug-finder-nodesktop -misra-ac-agc SQO-subset1
polyspace-bug-finder-nodesktop -misra-ac-agc -custom myrules.txt

polyspace-bug-finder-nodesktop -disable-checkers all
-misra-ac-agc all-rules

2-36

Check custom rules

Check custom rules
Check names or text patterns in source code with reference to custom rules in
specified text file. Each rule defines a check of a specified pattern against a
source code identifier. For more information, see “Create a Custom Coding
Rules File”.
Default:
Disabled
Example Shell Script Entry

polyspace-bug-finder-nodesktop -custom-rules myrules.txt

2-37

2 Option Descriptions for C Code

2-38

Files and folders to ignore

Specify files or folders that the coding rules checker should ignore. For
example, you can specify this option if you use headers that do not conform to
the MISRA C standard. You can specify the following values with this option:

® all-headers (default) — Exclude folders specified by the -I option that
contain only header files, that is, folders with no source files.

® all — Exclude all include folders specified by the -I option. For example,
if you are checking a large code base with standard or Visual headers,
excluding all include folders can significantly improve the speed of code
analysis.

® custom — Exclude files and folders that you specify.
The software displays a warning if:

® A specified file or folder does not exist.

e All source code is ignored.

You can specify this option only if you specify the -misra2, -misra-ac-agc, or
-custom-rules option.

Example shell script entry :

polyspace-bug-finder-nodesktop -misra2 misra.txt
-includes-to-ignore all

polyspace-bug-finder-nodesktop -misra2 misra.txt
-includes-to-ignore "c:\usr\include"

Effective boolean types

Effective boolean types
Use this option with the -misra2 option to specify data types that you want
Polyspace to treat as Boolean. The use of this option may affect the checking
of MISRA-C rules 12.6, 13.2, and 15.4.
The command line syntax for this option is

-boolean-types typel,type2,

where typel,type2, ... are names of the data types that you want
Polyspace to treat as Boolean.

Polyspace applies this treatment to the named data types in all source files.
For example, if two different data types share a name that is passed to the
option, then Polyspace considers both data types to be Boolean.

This option supports only integer data types (char, signed and unsigned

integer types, and enumerated types). For example, the data type boolean_t
defined as follows:

typedef signed char boolean_t;
Default:

No data types specified as Boolean.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -misra2 all-rules -boolean-types
bool typeil,bool_type2,bool_type3

2-39

2 Option Descriptions for C Code

2-40

Allowed pragmas

Use this option with the -misra2 option to specify undocumented pragma
directives for which MISRA C rule 3.4 should not be applied. MISRA C rule
3.4 requires checking that all pragma directives are documented within the
documentation of the compiler.
The command line syntax for this option is

-allowed-pragmas pragmatl,pragma2,pragma3 ...
where pragmat,pragma2, ... are undocumented pragma directives.
Default:
No undocumented pragma directives specified

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -misra2 AC-AGC-OBL-subset
-allowed-pragmas pragma0Oi1,pragma02,pragma03

Command/script to apply after the end of the code analysis

Command/script to apply after the end of the code

analysis

When this option is used, the specified script file or command is executed once
the analysis has completed.

The script or command is executed in the results directory of the analysis.

Note Depending of the architecture used (notably when using batch
analysis), the script can be executed locally or remotely.

Default:
No command.
Example Shell Script Entry - file name:

This example shows how to send an email to tip the client side off that his
analysis has been ended. So the command looks like:

polyspace-bug-finder-nodesktop -post-analysis-command
“pwd’ /end_email

where end_email is your Perl script.

To run the Perl script provided in the previous example on a Windows
workstation, you must use this option with the absolute path to the Perl
script, for example:

matlabroot\matlab\polyspace\bin\polyspace-bug-finder-nodesktop.exe
-post-analysis-command
matlabroot\matlab\sys\perl\win32\bin\perl.exe
<absolute_path>\end_email

2-41

2 Option Descriptions for C Code

Generate report

Specify whether to create analysis report using report generation options

Settings
Default: Off

Select the check box to generate a report.

2-42

Report template name

Report template name

Specify template for generating analysis report

Settings
Default:

Polyspace_Install\polyspace\toolbox\psrptgen\templates\Developer.rpt
Polyspace_Install is the installation folder for your Polyspace product.

Report templates provided with the software include:

® BugFinderSummary.rpt

® BugFinder.rpt

® CodeMetrics.rpt

Tip

Reports are generated at the end of the analysis process, before execution of
any -post-analysis-command.

Command-Line Information

Parameter: report-template

Type: string

Value: any valid script file name

Example: polyspace-bug-finder-nodesktop -report-template
filepath\my_template

2-43

2 Option Descriptions for C Code

2-44

Output format

Specify output format of report

Settings
Default: RTF
RTF

Generate an .rtf format report.
HTML

Generate an .html format report.
PDF

Generate a .pdf format report.
Word

Generate a .doc format report.

Word is not available on UNIX® platforms. RTF is used instead.
XML

Generate and .xml format report.

Note Word format is not available on UNIX platforms, RTF format is used
instead.

Note You must have Microsoft® Office installed to view .RTF format reports
containing graphics, such as the Quality report. —

Output format

Command-Line Information

Parameter: report-output-format
Type: string

Value: RTF | HTML | PDF | Word | XML
Default: RTF

Shell script example:

polyspace-bug-finder-nodesktop -report-template my_temp -report-output-format pdf

2-45

2 Option Descriptions for C Code

Find defects

Enable or disable defect checking.

Select checkbox to enable defect checking, clear to disable defect checking.
Use the settings to enable different sets of checkers

Default: On

Settings
Default: default

default
A list of default defects defined by the software. For information on
which defects are default, refer to the individual defect reference pages.

all
All defects.

custom
Choose the defects you want to find by selecting categories of checkers
or specific defects.

2-46

Find defects

Command-Line Information

The shell script always processes the -checkers option, and then
-disable-checkers option. Command-line parameters for the defects can be
found on the defect reference pages.

Parameter: -checkers

Type: strings

Value: category | defect parameter | all | default
Default: default

Parameter: -disable-checkers
Type: strings
Value: category | defect parameter
Shell script example:
polyspace-bug-finder-nodesktop -checkers numerical -disable-checkers FLOAT_ZERO_DIV

Runs an analysis with all numerical checkers except Float division by zero.

Concepts ¢ “Bug Finder Defect Categories” on page 1-2
¢ “Polyspace Bug Finder™ Defects”

2-47

2 Option Descriptions for C Code

2-48

Option Descriptions for C++
Code

® “Other” on page 3-3

* “Target processor type” on page 3-5

® “Generic target options” on page 3-6

e “Dialect” on page 3-13

e “Pack alignment value” on page 3-15

e “Import folder” on page 3-16

® “Ignore pragma pack directives” on page 3-17
® “Support managed extensions” on page 3-18

¢ “Enum type definition” on page 3-19

* “Management of scope of ’for loop’ variable index” on page 3-20
e “Management of w_char_t” on page 3-21

® “Set wchar_t to unsigned long” on page 3-22

® “Set size_t to unsigned long” on page 3-23

® “Overcome link error” on page 3-24

e “Main entry point” on page 3-25

e “Entry points” on page 3-26

e “Critical section details” on page 3-27

e “Check MISRA C++ rules” on page 3-28

e “MISRA C++ rules configuration” on page 3-29

3 Option Descriptions for C++ Code

e “Check JSF C++ rules” on page 3-31
e “JSF C++ rules configuration” on page 3-32

e “Files and folders to ignore” on page 3-34

Other

Other

This dialog box is for adding nonofficial or expert options to the analyzer. Each
word of the option (even the parameters) must be preceded by -extra-flags.

These flags will be given to you by MathWorks if required.
Default:

No extra flags.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -extra-flags -parami -extra-flags
-param2

-cpp-exira-flags flag

It specifies an expert option to be added to a C++ analysis. Each word of the
option (even the parameters) must be preceded by -cpp-extra-flags.

These flags will be given to you by MathWorks if required.
Default:

no extra flags.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -cpp-extra-flags
-stubbed-new-may-return-null

-il-extra-flags flag
It specifies an expert option to be added to a C++ analysis. Each word of the
option (even the parameters) must be preceded by -il-extra-flags.

These flags will be given to you by MathWorks if required.

Default:

3 Option Descriptions for C++ Code

no extra flags.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -il-extra-flags flag

Target processor type

Target processor type
This option specifies the target processor type, and by doing so informs
Polyspace of the size of fundamental data types and of the endianess of the

target machine.

Possible values are:

1386 (default)

® sparc

®* m68k

® powerpc

® c-167

* x86_64

® mcpu...(Advanced)

mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use
this type to configure one or more generic targets.

You can analyze code intended for an unlisted processor type using one of the
listed processor types, if they share common data properties. Refer to “Modify
Predefined Target Processor Attributes” for more details.

For information on specifying a generic target, or modifying the mcpu target,
see “Generic target options” on page 3-6.

Note The generic target option is incompatible with any visual dialect.

Default:
1386
Example shell script entry:

polyspace-bug-finder-nodesktop -target mé8k

3-5

3 Option Descriptions for C++ Code

Generic target options

The Generic target options dialog box opens when you select an mcpu target,
or a generic target.

This dialog box allows you to specify a generic "Micro Controller/Processor
Unit” or mcpu target name. Initially, use the dialog box to specify the name of
a new mcpu target - say, “MyTarget”.

Note The generic target option is incompatible with any visual dialect.

That new target is added to the -target options list. The new target’s default
characteristics are as follows, using the type [size, alignment] format.

® char [8, 8], char [16,16]

® short [16, 16]

* int [16, 16]

* Jong [32, 32], long long [32, 32]

® float [32, 32], double [32, 32], long double [32, 32]

® pointer [16, 16]

® char is signed

o little-endian

When using the command line, MyTarget is specified with all the options
for modification:

polyspace-bug-finder-nodesktop -target MyTarget

For example, a specific target uses 8 bit alignment (see also -align), for
which the command line would read:

polyspace-bug-finder-nodesktop -target mcpu -align 8

Generic target options

-little-endian
This option is only available when a -mcpu generic target has been chosen.

The endianness defines the byte order within a word (and the word order
within a long integer). Little-endian architectures are Less Significant byte
First (LSF), for example: 1386.

For a little endian target, the less significant byte of a short integer (for
example 0x00FF) is stored at the first byte (OxFF) and the most significant
byte (0x00) at the second byte.

Example shell script entry:

polyspace-bug-finder-nodesktop -target mcpu -little-endian
-big-endian

This option is only available when a -mcpu generic target has been chosen.
The endianness defines the byte order within a word (and the word order
within a long integer). Big-endian architectures are Most Significant byte
First (MSF), for example: SPARC, m68k.

For a big endian target, the most significant byte of a short integer (for
example 0x00FF) is stored at the first byte (0x00) and the less significant
byte (0xFF) at the second byte.

Example shell script entry:

polyspace-bug-finder-nodesktop -target mcpu -big-endian
-default-sign-of-char [signed | unsigned]

This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

Default mode:

The sign of char is left to assume the target’s default behavior. By default all
targets are considered as signed except for powerpc targets.

3 Option Descriptions for C++ Code

3-8

Signed:

Disregards the target’s default char definition, and specifies that a "signed
char" should be used.

Unsigned:

Disregards the target’s default char definition, and specifies that a "unsigned
char" should be used.

Example Shell Script Entry

polyspace-bug-finder-nodesktop -default-sign-of-char unsigned
-target mcpu

-char-is-16bits
This option is available only when you select a mcpu generic target.

The default configuration of a generic target defines a char as 8 bits. This
option changes it to 16 bits, regardless of sign.

the minimum alignment of objects 1s also set to 16 bits and so, incompatible
with the options -short-is-8 bits and -align 8.

Setting the char type to 16 bits has consequences on the following:

e computation of size of for objects

¢ detection of underflow and overflow on chars

Without the option char for mcpu are 8 bits

Example shell script entry:

polyspace-bug-finder-nodesktop -target mcpu -char-is-16bits

-short-is-8bits

This option is only available when a generic target has been chosen.

Generic target options

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, irrespective of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

e computation of size of objects referencing short type

¢ detection of short underflow/overflow
Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -short-is-8bits
-int-is-32bits
This option is available with a generic target has been chosen.
The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, irrespective of sign. Its alignment, when an int
1s used as struct member or array component, is also set to 32 bits. See
also -align option.
Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -int-is-32bits
-long-long-is-64bits
This option is only available when a generic target has been chosen.
The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, irrespective of sign. When a long long is
used as struct member or array component, its alignment is also set to 64
bits. See also -align option.

Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -long-long-is-64bits

3-9

3 Option Descriptions for C++ Code

3-10

-double-is-64bits

This option 1s available when either a generic target has been chosen.

The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or
long double is used as a struct member or array component, its alignment

1s set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:

- Computation of sizeof objects referencing double type
- Detection of floating point underflow/overflow

Example

int main(void)
{

struct S {char x; double f;};

double x;

unsigned s1, s2;

s1 = sizeof (double);

s2 = sizeof(struct S);

X = 3.402823466E+38; /*IEEE 32 bits float point maximum value*/
X =X * 2;

return 0;

}

Using the default configuration of sharc21x62, C Polyspace assumes that a
value of 1 is assigned to s1, 2 is assigned to s2, and there is a consequential
float overflow in the multiplication x * 2. Using the -double-is-64bits option,
a value of 2 is assigned to s1, and no overflow occurs in the multiplication
(because the result is in the range of the 64-bit floating point type)

Example shell script entry

Generic target options

polyspace-bug-finder-nodesktop -target mcpu
-double-is-64bits

-pointer-is-32bits
This option is only available when a generic target has been chosen.
The default configuration of a generic target defines a pointer as 16 bits. This

option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-bug-finder-nodesktop -target mcpu -pointer-is-32bits
-align [8]16]32]
This option is available with an mcpu generic target and some other specific
targets. It is used to set the largest alignment of all data objects to 4/2/1
byte(s), meaning a 32, 16 or 8 bit boundary respectively.
The default alignment of a generic target is 32 bits. This means that when
objects with a size of more than 4 bytes are used as struct members or array

components, they are aligned at 4 byte boundaries.

Example shell script entry with a 32 bits default alignment
polyspace-bug-finder-nodesktop -target mcpu

-align 16
If the -align 16 option is used, when objects with a size of more than 2 bytes
are used as struct members or array components, they are aligned at 2 bytes
boundaries.

Example shell script entry with a 16 bits specific alignment:

polyspace-bug-finder-nodesktop -target mcpu -align 16

3-11

3 Option Descriptions for C++ Code

3-12

-align 8

If the -align 8 option is used, when objects with a size of more than 1 byte
are used as struct members or array components, are aligned at 1 byte
boundaries. Consequently the storage assigned to the arrays and structures is
strictly determined by the size of the individual data objects without member
and end padding.

Example shell script entry with a 8 bits specific alignment:

polyspace-bug-finder-nodesktop -target mcpu -align 8

Dialect

Dialect

Specifies the dialect in which the code is written. Possible values are:

® gnu (default if -0S-target is set to Linux)
e cfront2

e cfront3

® iso

® visual

® visualé

® visual7.0

® visual7.1

® visual8

® visual9.0

visual6 activates dialect associated with code used for Microsoft Visual 6.0

compiler and visual activates dialect associated with Microsoft Visual 7.1
and subsequent.

If the dialect is visual (visual, visual6, visual7.0, visual7.1 visual8, and
visual9.0) the -OS-target option must be set to Visual.

If the dialect is visual, the option -dos, -0S-target Visual is set by default.
visual8 dialect activates support for Visual 2005 .NET specific compiler.

All Visual 2005 .NET given include files can compile both with the
-no-stl-stubs option and without it (recommended).

Note If you select the - jsf-coding-rules option and a dialect other than
iso or default, some JSF®++ coding rules may not be completely checked.
For example, AV Rule 8: “All code shall conform to ISO/IEC 14882:2002(E)
standard C++.”

3-13

3 Option Descriptions for C++ Code

Default:

gnu if -0S-target is set to Linux
visual7.1 if -0S-target is set to visual
none otherwise

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -dialect visual8

3-14

Pack alignment value

Pack alignment value

Visual C++ /This option specifies the default packing alignment for a project.
Option -pack-alignment-value transfers the default alignment value to
Polyspace analysis.
The argument value must be: 1, 2, 4, 8, or 16. Analysis will halt and display
an error message with a bad value or if this option is used in non visual mode
(-0S-target visual or -dialect visual* (6, 7.0 or 7.1)).
Default:

8
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -dialect visual
-pack-alignment-value 4 ...

3-15

3 Option Descriptions for C++ Code

Import folder

One directory to be included by #import directive. This option must be used
with -0S-target visualor -dialect visual* (6, 7.0, 7.1 and 8). It gives the
location of *.tlh files generated by a Visual Studio compiler when encounter
#import directive on *.tlb files.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -dialect visual8 -import-dir
/comi/inc ...

3-16

Ignore pragma pack directives

° L3

Ignore pragma pack dlrectlves
C++ #pragma directives specify packing alignment for structure, union, and
class members. The -ignore-pragma-pack option allows these directives to be
ignored in order to prevent link errors.
Polyspace analysis stops execution and displays an error message if this
option i1s used in non visual mode or without dialect gnu (without -0S-target
visual or dialect visual¥®).

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -dialect visual
-ignore-pragma-pack

3-17

3 Option Descriptions for C++ Code

3-18

Support managed extensions

Visual C++ /FX option allows the partial translation of sources making use
of managed extensions to Visual C++ sources without managed extensions.
Theses extensions are currently not taken into account by Polyspace analysis
and can be considered as a limitation to analyze this kind of code.

Using /FX, the translated files are generated in place of the original ones in
the project, but the names are changed from foo.ext to foo.mrg.ext.

Option - support-FX-option-results allows the analysis of a project containing
translated sources obtained by compilation of a Visual project using the /FX
Visual option. Managed files need to be located in the same folder as the
original ones and Polyspace software will analyze managed files instead of
the original ones without intrusion, and will permit you to remove part of the
limitations due to specific extensions.

Polyspace analysis stops execution and displays an error message if this option
is used in non visual mode (-OS-target visual or -dialect visual* (6, 7.0 or 7.1)).

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -dialect visual -
support-FX-option-results

Enum type definition

Enum type definition

Allows the analysis to use different base types to represent an enumerated
type, depending on the enumerator values and the selected definition.

When using this option, each enum type is represented by the smallest
integral type that can hold all its enumeration values.

Possible values are:

® auto-signed-int-first - Uses the first type that can hold all of the
enumerator values from the following list: signed int, unsigned int,
signed long, unsigned long, signed long long, unsigned long long

® auto-signed-first - Uses the first type that can hold all of the enumerator
values from the following list: signed char, unsigned char, signed
short, unsigned short, signed int, unsigned int, signed long,
unsigned long, signed long long, unsigned long long.

® auto-unsigned-first - Uses the first type that can hold all of the
enumerator values from the following lists:

= If enumerator values are all positive: unsigned char, unsigned short,
unsigned int, unsigned long, unsigned long long.

= If one or more enumerator values are negative: signed char, signed
short, signed int, signed long, signed long long.

3-19

3 Option Descriptions for C++ Code

Management of scope of ‘for loop’ variable index

This option changes the scope of the index variable declared within a for
loop. For example:

for (int index=0; ...){};
index++; // At this point, index variable is usable (out) or not (in)

You can specify one of the following values:

e defined-by-dialect — Default behavior specified by selected dialect.

® out — Default behavior for the -dialect options cfront2, crfront3,
visual6, visual7 and visual 7.1.

® in — Default behavior for all other dialects, including visual8. The C++
standard specifies that the index is treated as in.

This option allows the default behavior implied by the Polyspace -dialect
option to be overridden.

This option is equivalent to the Visual C++® options /Zc:forScope and
Zc:forScope-.

Default:
defined-by-dialect
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -for-loop-index-scope in

3-20

Management of w_char_t

Management of w_char_t
With this option, you can force wchar_t to be treated as a:

e Keyword as given by the C++ standard
* typedef statement specified by Microsoft Visual C++ 6.0/7.x dialects.

You can specify one of the following values’:

e defined-by-dialect — Default behavior specified by selected dialect.

e typedef — Default behavior for -dialect options visual6, visual7.0
and visual7.1.

® keyword — Default behavior for all others dialects including visuals.

This option allows the default behavior implied by the Polyspace -dialect
option to be overridden.

This option is equivalent to the Visual C++ options /Zc:wchar and
/Zc:wchar-.

Default:
defined-by-dialect
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -wchar-t-is typedef

3-21

3 Option Descriptions for C++ Code

Set wchar_t to unsigned long

This option forces the “underlying type” as defined in the C++ standard
to be unsigned long.

For example, sizeof (L'W') will have the value of sizeof (unsigned long)
and the wchar_t field will be aligned in the same way as the unsigned long
field. Note that wchar_t will remain a different type from unsigned long
unless “-wchar-t-is typedef” is set or implied by the current dialect. The
default underlying type of wchar_t is unsigned short.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -wchar-t-is-unsigned-long ...

3-22

Set size_t to unsigned long

Set size_t to unsigned long

Indicates the expected typedef of size_t to the software; forces the size_t type
to be unsigned long. The default type of size_t is unsigned int.

Example Shell Script Entry: polyspace-bug-finder-nodesktop
-size-t-is-unsigned-long ...

3-23

3 Option Descriptions for C++ Code

Overcome link error
Some functions may be declared inside an extern “C” { } bloc in some files and
not in others. Then, their linkage is not the same and it causes a link error
according to the ANSI standard.
Applying this option will cause Polyspace to ignore this error.
This permissive option may not solve all the extern C linkage errors.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -no-extern-C ...

3-24

Main entry point

Main entry point

The option specifies the name of the main subprogram when you select a
visual -0S-target. This procedure will be analyzed after class elaboration,
and before tasks in case of a multitasking application or in case of the
-entry-points usage

Possible values are:

® tmain (default)
® wmain

® tWinMain

® wWinMain

® WinMain

e Dl1lMain.

However, if the main subprogram does not exist, Polyspace analysis stops
with an error message.

Default:
_tmain
Example Shell script entry:

polyspace-bug-finder-nodesktop -main WinMain -0S-target visual

3-25

3 Option Descriptions for C++ Code

3-26

Entry points

This option is used to specify the tasks/entry points to be analyzed by
Polyspace software, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Format:

¢ All tasks must have the prototype "void any name() .

e [t is possible to declare a member function as an entry point of a analysis,
only and only if the function is declared “static void task_name()”.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -entry-points
class::task_name,taskname,proci,proc2

Critical section details

LR [(3

Critical section details
-critical-section-begin "proci:csi[,proc2:cs2]"
and
-critical-section-end "proc3:csi1[,proc4:cs2]"
These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double quotation marks (),
with list entries separated by commas, and no spaces. Entries in the lists take
the form of the procedure name followed by the name of the critical section,

with a colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Limitation:

® Name of procedure accept only void any_name() as prototype.

¢ The beginning and the end of the critical section need to be defined in same
block of code.

Default:
no critical sections.
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -critical-section-begin
"start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

3-27

3 Option Descriptions for C++ Code

Check MISRA C++ rules

Specifies that Polyspace software checks for compliance with the MISRA C++
coding standards (MISRA C++:2008).

The results are included in the log file of the analysis.

For more information, see “Activate Coding Rules Checker”.

3-28

MISRA® C++ rules configuration

MISRA C++ rules configuration

Specifies set of coding rules to check.

e required-rules — Check all required MISRA C++ coding rules. All
violations are reported as warnings.

® all-rules — Check all required and advisory coding rules. All violations
are reported as warnings.

® SQ0-subset1 — Check a subset of MISRA C++ rules that have a direct
impact on the selectivity of analysis. All violations are reported as
warnings. For more information, see “SQO Subset 1 — Direct Impact on
Selectivity”.

® SQ0-subset2 — Check a second subset of MISRA C++ rules that have an
indirect impact on the selectivity of analysis, as well as the rules contained
in SQ0-subset1. All violations are reported as warnings. For more
information, see “SQO Subset 2 — Indirect Impact on Selectivity”.

e custom — Check a specified set of MISRA C++ coding rules. You must
provide the name of a file containing a list of MISRA C++ rules to check.

Note If you specify -misra-cpp, the -Wall option is disabled.

Format of the file:

<rule number> off|error|warning
is considered a comment.

Example:

MISRA-C++ rules configuration file
Generated by Polyspace

-1 warning
-2 warning
-7 warning
-8 off
-9 off

O O o oo
T Gy

3-29

3 Option Descriptions for C++ Code

0-1-1
0-1-1
0-1-1
1-0-1 error
1-0-2 off # Not implemented
1-0-3 off # Not implemented
2-2-1 off # Not implemented
2-3-1 warning

2-5-1 warning

2-7-1 warning

End of file

Default:

Disabled

Example shell script entry:
polyspace-bug-finder-nodesktop -misra-cpp all-rules
polyspace-bug-finder-nodesktop -misra-cpp misra.txt

polyspace-bug-finder-nodesktop -disable-checkers all -misra-cpp
all-rules

3-30

Check JSF® C++ rules

Check JSF C++ rules

Specifies that Polyspace software checks for compliance with the Joint Strike
Fighter® Air Vehicle C++ coding standards (JSF++:2005).

The results are included in the log file of the analysis.

For more information, see “Activate Coding Rules Checker”.

3-31

3 Option Descriptions for C++ Code

3-32

JSF C++ rules configuration

Specifies which JSF C++ coding rules to check.

shall-rules — Check all Shall rules, which are mandatory rules that
require analysis.

shall-will-rules — Check all Shall and Will rules. Will rules are
mandatory rules that do not require analysis.

all-rules — Check all Shall, Will, and Should rules. Should rules are
advisory rules.

custom — Check a specified set of JSF C++ coding rules. When you select
this option, you must provide a rules file that specifies the JSF C++ rules to
check and whether to report an error or warning for violations of each rule.
For more information, see “Select Specific Coding Rules”.

Note If you specify - jsf-coding-rules, the -Wall option is disabled.

Note If your project uses a dialect other than ISO, some JSF++ coding rules
may not be completely checked. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Format of the file:

<rule number> off|error|warning

#

is considered a comment.

Example:

*T O 00 WN = I

JSF-CPP rules configuration file

off # disable AV Rule number 1

off # Not implemented

off # disable AV Rule 3

error # violation AV Rule 8 is error

warning # violation AV Rule 9 is only a warning
End of file

JSF® C++ rules configuration

Default:

Disabled

Example shell script entry:

polyspace-bug-finder-nodesktop -jsf-coding-rules all-rules
polyspace-bug-finder-nodesktop -jsf-coding-rules jsf.txt

polyspace-bug-finder-nodesktop -disable-checkers all
-jsf-coding-rules all-rules

3-33

3 Option Descriptions for C++ Code

Files and folders to ignore

Specify files or folders that the coding rules checker should ignore. For
example, you can specify this option if you use headers that do not conform
to the JSF++ or MISRA C++ standard. You can specify the following values
with this option:

® all-headers (default) — Exclude folders specified by the -I option that
contain only header files, that is, folders with no source files.

® all — Exclude all include folders specified by the -I option. For example,
if you are checking a large code base with standard or Visual headers,
excluding all include folders can significantly improve the speed of code
analysis.

® custom — Exclude files and folders that you specify.
The software displays a warning if:

® A specified file or folder does not exist

e All source code 1s ignored

You can specify this option only if you specify the - jsf-coding-rules,
-misra-cpp, or -custom-rules option.

Example shell script entry :

polyspace-bug-finder-nodesktop -jsf-coding-rules jsf.txt
-includes-to-ignore all

polyspace-bug-finder-nodesktop -jsf-coding-rules jsf.txt
-includes-to-ignore "c:\usr\include"

3-34

Command Line Only
Options

® “-sources-list-file” on page 4-3

e “-v | -version” on page 4-4

e “_h[elp]” on page 4-5

®* “.prog” on page 4-6

e “_date” on page 4-7

e “.lang” on page 4-8

e “_author” on page 4-9

e “.results-dir” on page 4-10

e “-sources” on page 4-11

e “-I” on page 4-13

e “_import-comments” on page 4-14

e “_tmp-dir-in-results-dir” on page 4-15
e “-less-range-information” on page 4-16
® “-no-pointer-information” on page 4-17
e “-asm-begin -asm-end” on page 4-18

e “.permissive” on page 4-19

e “-Wall” on page 4-20

e “-report-output-name” on page 4-21

® “_max-processes” on page 4-22

4 Command Line Only Options

e “-scheduler” on page 4-23

-sources-list-file

-sources-list-file

This option is only available at the command line. The syntax of file_name
1s the following:

® One file per line.

e Each file name includes its absolute or relative path.

The source files are compiled in the order in which they are specified.

Note If you do not specify any files, the software analyzes all files in the
source directory in alphabetical order.

Example Shell Script Entry for -sources-list-file:

polyspace-bug-finder-nodesktop -sources-list-file
"C:\Analysis\files.txt"

polyspace-bug-finder-nodesktop -sources-list-file "files.txt"

4-3

4 Command Line Only Options

-V

-version
Display the Polyspace version number.
Example Shell Script Entry:
polyspace-bug-finder-nodesktop Vv
It will show a result similar to:
Polyspace r2007a+

Copyright (c) 1999-2008 The Mathworks, Inc.

-h[elp]

-h[elp]

Display in the shell window a simple help in a textual format giving
information on all options.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop h

4 Command Line Only Options

-prog

Specify a name for the project.

Note The Session identifier option no longer appears in the General section
of the Analysis options GUI. You specify the Project name, Version, and
Author parameters in the Polyspace Project — Properties dialog box. For more
information, see “Create New Projects”.

Settings
Default: New Project

® The Session identifier cannot contain spaces.

¢ Use only characters that are valid for UNIX file names.

Command-Line Information

Parameter: -prog
Value: any valid value
Example: polyspace-bug-finder-nodesktop -prog myApp ...

-date

-date

Specify a date stamp for the analysis.

Note The Date option no longer appears in the General section of the
Analysis options GUI. The date is set automatically when you launch a
analysis.

Settings
Default: Date the analysis 1s launched

By default, the date stamp uses the dd/mm/yyyy format.

Tip
You can specify an alternative date format by selecting Edit > Preferences
> Miscellaneous in the Launcher.

Command-Line Information

Parameter: -date
Value: any valid value
Example: polyspace-bug-finder-nodesktop -date "02/01/2002"...

4 Command Line Only Options

-lang

Specify the code language for the project.

Note In the Polyspace interface, specify the project language when you
create a new project. For more information, see “Create New Projects”.

Settings
Specify either C or C++ as the language.

Command-Line Information

Parameter: -lang
Value: ¢ | cpp
Example: polyspace-bug-finder-nodesktop -lang ¢ ...

-author

-author

Specify the name of the person performing the analysis.

Note The Author option no longer appears in the General section of the
Analysis options GUI. You specify the Project name, Version, and Author
parameters in the Polyspace Project — Properties dialog box. For more
information, see “Create New Projects” .

Settings

Default: username of the current user.

Note The default username is obtained with the whoami command.

Command-Line Information

Parameter: -author
Value: any valid value
Example: polyspace-bug-finder-nodesktop -author "John Tester"

4 Command Line Only Options

4-10

-results-dir

This option specifies the folder in which Polyspace software will write the
results of the analysis. Note that although relative folders may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration file
1s to be copied using the "Save as" option.

Default:
Shell Script: The folder in which tool is launched.
From Graphical User Interface: C: \Polyspace Results

Example Shell Script Entry:
polyspace-bug-finder-nodesktop -results-dir RESULTS ...

export RESULTS=results_"date +%d%B_S%HH%M S%A"
polyspace-bug-finder-nodesktop -results-dir “pwd’/$RESULTS ...

-sources

-sources
Specifies a list of source files to be analyzed.
The list of source files must be double-quoted and separated by commas.

® -sources "file?[file2[...]]" (Linux and Solaris™)
® -sources "filel[,file2[, ...]]1" (Windows, Linux and Solaris)

® -sources-list-file file name (not a graphical option)

Note UNIX standard wild cards are available to specify a number of files.

The source files are compiled in the order in which they are specified.

Note If you do not specify any files, the software analyzes all files in the
source directory in alphabetical order.

Note The specified files must have valid extensions:
*(c|Clcc|cpp| CPP|cxx | CXX)

Defaults:
sources/*.(c|C|cc|cpp|CPP|cxx|CXX)

Example Shell Script Entry under linux or solaris (files are separated
with a white space):

polyspace-bug-finder-nodesktop -sources "my_directory/*.cpp"
polyspace-bug-finder-nodesktop -sources "my_directory/filel.cc
other_dir/file2.cpp"

Example Shell Script Entry under windows (files are separated with a
comma,):

4-11

4 Command Line Only Options

polyspace-bug-finder-nodesktop -sources
"my_directory/filel.cpp,other_dir/file2.cc"

Using -sources-1list-file, each file name need to be given with an absolute
path. Moreover, the syntax of the file is the following:

® One file by line.

e Each file name is given with its absolute path.

Note This option is only available at the command line

Example Shell Script Entry for -sources-list-file:

polyspace-bug-finder-nodesktop -sources-list-file
"C:\Analysis\files.txt"
polyspace-bug-finder-nodesktop -sources-list-file
"/home/poly/files.txt"

4-12

Specify the name of a folder that must be included when compiling C sources.
You can specify only one folder for each -I instance. However, you can specify
this option multiple times.

Polyspace software implicitly includes the . /sources folder (if it exists) after
any include folders that you specify.

Example Shell Script Entry-1:
polyspace-bug-finder-nodesktop -I /comi/inc -I /comil/sys/inc
is equivalent to

polyspace-bug-finder-nodesktop -I /comi/inc -I /comil/sys/inc
-I ./sources

Example Shell Script Entry-2:
polyspace-bug-finder-nodesktop
is equivalent to

polyspace-bug-finder-nodesktop -I ./sources

4-13

4 Command Line Only Options

-import-comments
Removing

Use option to automatically import coding rule and run-time check comments
and justifications from specified folder at the end of analysis.

Default:
Disabled
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -version 1.3 -import-comments
C:\PolyspaceResults\1.2

4-14

-tmp-dir-in-results-dir

-tmp-dir-in-results-dir
If you specify the new option -tmp-dir-in-results-dir, Polyspace does not
use the standard /tmp or C: \Temp folder to store temporary files. Instead,
Polyspace uses a subfolder of the results folder. This action may affect
processing speed if the results folder is mounted on a network drive. Use
this option only when the temporary folder partition is not large enough and
troubleshooting is required.
Default:
Disabled
Example Shell Script Entry:

polyspace-bug-finder-nodesktop -tmp-dir-in-results-dir
-results-dir C:\Polyspace\Results

4-15

4 Command Line Only Options

4-16

-less-range-information

Limits the amount of range information displayed in analysis results.

When you select this option, the software provides range information on
assignments, but not on reads and operators.

In addition, selecting this option enables the no-pointer-information
option. See “-no-pointer-information” on page 4-17

Computing range information for reads and operators may take a long time,
and can reduce the precision of the analysis. Selecting this option can
reduce analysis time significantly, and improve the precision of the analysis.
Consider the following example:

X =y + z;

If you do not select this option (the default), the software displays range

information when you place the cursor over x, y, z, or +. However, if you
select this option, the software displays range information only when you
place the cursor over x.

Default:

Disabled.

Example Shell Script Entry :

polyspace-bug-finder-nodesktop -less-range-information

-no-pointer-information

-no-pointer-information
Stops the display of pointer information in analysis results.
When you select this option, the software does not provide pointer information
through tooltips. As computing pointer information may take a long time,
selecting this option can significantly reduce analysis time.
Consider the following example:
X = *p;
If you do not select this option (the default), the software displays pointer
information when you place the cursor on p or *. If you select this option, the
software does not display pointer information.
Default:
Disabled.
Example Shell Script Entry :

polyspace-bug-finder-nodesktop -no-pointer-information

4-17

4 Command Line Only Options

-asm-bhegin -asm-end
-asm-begin "marki[mark2[...]] "
and
-asm-end "marki[mark2[...]1"

These options are used to allow compiler specific asm functions to be excluded
from the analysis, with the offending code block delimited by two #pragma
directives.

Consider the following example.

#pragma asm_begin_1

int foo_1(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_1

#pragma asm_begin_2

void foo_2(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_2

Where "asm_begin_1" and "asm_begin_2" marks the beginning of asm
sections which will be discarded and “asm_end_1”, respectively "asm_end_ 2"
mark the end of those sections.

Note The asm-begin and asm-end options must be used together.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -discard-asm -asm-begin
"asm_begin_1,asm_begin_2" -asm-end "asm_end_1,asm_end_ 2" ...

4-18

-permissive

-permissive

This option selects the Polyspace permissive mode, which is equivalent to
using all of the following options:

® -ignore-constant-overflows

® -allow-negative operand-in-shift

4-19

4 Command Line Only Options

4-20

-Wall

Specifies that the software display all possible warnings during the C
compliance phase.

Using this option can be an effective way to detect problems in the code
without using the MISRA checker.

For example, when you specify this option, the software adds the following
warning to the log file when trying to write into a const variable:

warning: assignment of read-only member <var>
Default:

By default, only warnings about compliance across different files
are printed.

Example Shell Script Entry:

polyspace-bug-finder-nodesktop -Wall

-report-output-name

-report-output-name

Specify name of analysis report file

Settings
Default: Prog_TemplateName.Format where:
® Prog is the argument of the prog option

® TemplateName is the name of the report template specified by the
report-template option

® Format is the file extension for the format specified by the
report-output-format option.

Command-Line Information

Parameter: report-output-name
Type: string

Value: any valid value

Default: Prog_TemplateName.Format

Shell script example:

polyspace-bug-finder-nodesktop -report-template my_temp -report-output-name Air.rtf

4-21

4 Command Line Only Options

-max-processes

This option determines the number of processors used in during the analysis.
By default, Polyspace will take advantage of a multiprocessor to speed up
analysis. If you want to specify a specific maximum number of processors
use this option at the command line.

Command-Line Information

Parameter: -max-processes
Type: integer
Value: an integer between 1 and 128

Shell script example:

polyspace-bug-finder-nodesktop -max-processes 4 ...

4-22

-scheduler

-scheduler

This option calls the job scheduler to run your analysis remotely. Use this
option with the -batch option.

Command-Line Information

Parameter: -scheduler
Type: hostname or MATLAB® Job Scheduler
Value: hostname or MJSname@host

Shell script example:

polyspace-bug-finder-nodesktop -batch -scheduler MJSname@host

polyspace-bug-finder-nodesktop -batch -scheduler hostname

4-23

4 Command Line Only Options

4-24

Checks

Assertion

5-2

Purpose
Description

Examples

Failed assertion statement
Assertion occurs when the asserted expression is or might be false.

Check Assertion on Unsigned Integer

void asserting_x(unsigned int theta) {

theta =+ 5;
assert(theta < 0);

}

In this example, the assert function checks if the input variable, theta,
is less than or equal to zero. The assertion fails because theta is an
unsigned integer, so the value at the beginning of the function is at
least zero. This positive value is increased by five. Therefore, the range
of thetais [5..MAX_INT]. theta is always greater than zero.

Correction — Change Assert Expression

One possible correction is to change the assertion expression. By
changing the less-than-or-equal-to sign to a greater-than-or-equal-to
sign, the assertion no longer fails.

void asserting_x(unsigned int theta) {

theta =+ 5;
assert(theta > 0);

Correction — Fix Code

One possible correction is to fix the code related to the assertion
expression. If the assertion expression is true, fix your code so the
assertion passes.

void asserting_x(int theta) {

Assertion

theta = -abs(theta);
assert(theta < 0);

}
Command-Line Argument: assert
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers assert

Related e “Review and Comment Results”
Examples
Concepts * “Other Defects”

lllegal delete
|

Purpose Pointer deallocation using delete without corresponding allocation
using new
Description Illegal delete occurs when a block of memory released using the

delete operator was not previously allocated with the new operator.

This defect applies only if the code language for the project is C++.

Examples lllegal delete error

void Assign_Ones(void)
{
int p[10];

for(int i=0;i<10;i++)
*(p+i)=1;

delete[] p;
/* Defect: p does not point to dynamically allocated memory */

}

The pointer p is released using the delete operator. However, p points
to a memory location that was not dynamically allocated.

Corrected Code: Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one
possible correction is to remove the deallocation of the pointer p.

void Assign_Ones(void)
{
int p[10];

for(int i=0;i<10;i++)
*(p*i)=1;

/* Fix: Remove deallocation of p */

}

5-4

lllegal delete

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time,
one possible correction is to dynamically allocate memory to the array
p using the new operator.

void Assign_Ones(int num)
{
/* Fix: Allocate memory dynamically to p */
int *p = new int[10];

for(int i=0;i<10;i++)

*(p+i)=1;

delete[] p;

Command-Line Argument: bad_delete
Information Type: string
Default: 'off'
Example: polyspace-bug-finder-nodesktop -checkers

bad_delete
See Also 1nvalid free of pointer |

Related e “Review and Comment Results”
Examples

Invalid use of == operator

5-6

Purpose

Description

Examples

Equality operation in assignment statement

Invalid use of == operator occurs when an equality operator instead
of an assignment operator is used in a simple statement. A common
correction is removing one of the equal signs (=).

Equality Evaluation in for-loop

void populate_array(void)
{

int i = 0;

int j = 0;

int array[4];

for (3 ==5; 37 < 9; j++) {
array[i] = j;
it++;

}

Inside the for-1loop, the statement j == 5 tests whether j is equal to
5 instead of setting j to 5. The for-1loop iterates from O to 8 because
j starts with a value of 0, not 5. A by-product of the invalid equality
operator is an out-of-bounds array access in the next line.

Correction — Change to Assignment Operator

One possible correction is to change the == operator to a single equals
sign (=), Changing the == sign resolves both defects because the
for-1loop iterates the correct number of times.

void populate_array(void)
{

int 1 = 0;

int j = 0;

int array[4];

for (j = 5; j <95 j++) {

Invalid use of == operator

array[i] = j;
i++;
}
}
Command-Line Argument: bad_equal_equal use
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
bad_equal_equal_use

See Also 1nvalid use of = operator |

Related ¢ “Review and Comment Results”
Examples
Concepts ® “Programming Defects”

Invalid use of = operator

Purpose

Description

Examples

Assignment in control statement

Invalid use of = operator occurs when an assignment is made inside
a logical statement, such as if or while. Use the equals operator as an
assignment operator, not to determine equality. A common correction
for this defect is adding a second equal sign (==).

Assignment in an if-statement

#include <stdio.h>

void equality_test(int alpha, int beta)
{
if(alpha = beta){
printf("Equal\n");
}
}

The equal sign is flagged as a defect because the assignment operator
is used within the if-statement. Due to the single equals sign, the
statement assigns the value beta to alpha, then determines the logical
value of alpha.

Correction — Equality operator in if-statement

One possible correction is adding an additional equal sign. This
correction changes the assignment operator to an equality operator.
The if-statement evaluates the equality between alpha and beta.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
if(alpha == beta)({
printf("Equal\n");
}

Invalid use of = operator

Correction — Assignment Inside an if-statement

If an assignment must be made inside a control statement, one possible
correction is clarifying the control statement. This correction assigns
the value of beta to alpha, and determines if alpha is nonzero.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
if((alpha = beta) != 0){
printf("Equal\n");
}

Command-Line Argument: bad_equal_use

Information Type: string
Default: 'off'
Example: polyspace-bug-finder-nodesktop -checkers
bad_equal_use

See Also 1nvalid use of == operator |

Related ¢ “Review and Comment Results”
Examples
Concepts ¢ “Programming Defects”

Invalid use of floating point operation

5-10

Purpose

Description

Examples

Imprecise comparison of floating point variables

Invalid use of floating point operation occurs when you use an
equality (==) or inequality (!=) operation with floating point numbers.
It is possible that the equality or inequality of two floating point values
1s not exact because floating point representation might be imprecise.

Two Equal Floats

float onePointOne(void) {

float flt = 1.0;
if (flt == 1.1)

return flt;
return 0O;

}

In this function, the if-statement tests the equality of f1t and the
number 1.1. Even though the equality in this function is obvious (1.0 is
not equal to 1.1), longer floating point values are not quite so simple. Do
not use equality with floating points because it can produce unexpected
behavior.

Correction — Change the Operator

One possible correction is to use a different operator that is not as strict.
For example, an inequality like > or <.

float onePointOne(void) {

float flt = 1.0;

if (fabs(flt-1.1) < Epilson)
return flt;

return 0;

Invalid use of floating point operation

Correction — Change the Operands

One possible correction is to change the operands to more precise data
types. In this example, using integers instead of floats corrects the error.

int onePointOne(void) {

int f1t = 1;

if (flt == 1)
return flt;

return 0;

Command-Line Argument: bad_float_op
Information Type: string
Default: 'off'

Example: polyspace-bug-finder-nodesktop -checkers
bad_float_op

Related ¢ “Review and Comment Results”
Examples
Concepts * “Other Defects”

5-11

Invalid free of pointer

Purpose

Description

Examples

5-12

Pointer deallocation without a corresponding dynamic allocation

Invalid free of pointer occurs when a block of memory released using
the free function was not previously allocated using malloc, calloc,
or realloc.

Invalid free of pointer error

#include <stdlib.h>

void Assign_Ones(void)

{
int p[10];
for(int i=0;i<10;i++)
*(p+i)=1;
free(p);
/* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points
to a memory location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one
possible correction is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
{
int p[10];
for(int i=0;i<10;i++)
*(p+i)=1;
/* Fix: Remove deallocation of p */

}

Invalid free of pointer

Command-Line
Information

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time,
one possible correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)

{

int *p;
/* Fix: Allocate memory dynamically to p */
p=(int*) calloc(10,sizeof(int));
for(int i=0;i<10;i++)
*(pti)=1;
free(p);

Argument: bad_free
Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
bad_free

See Also 11legal delete |

Related
Examples

e “Review and Comment Results”

5-13

Code deactivated by constant false condition

5-14

Purpose Code segment deactivated by #if 0 directive or if(0) condition

Description Code deactivated by constant false condition occurs when a block
of code is deactivated using a #if 0 directive or if (0) condition.

Examples Code deactivated by constant false condition error

#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)

{
int Count=0;

for(int i=0;1i < Size;i++)

{

if (Arr[i]>Cutoff)
{
Arr[i]=Cutoff;
Count++;
}

}

#if 0O

/* Defect: Code Segment Deactivated */

if (Count==0)
{
printf("All values less than cutoff.");

}
#endif

return Count;

}

In the preceding code, the printf statement is placed within a #if
#endif directive. The portion within the directive is treated as a code
comment and not compiled.

Code deactivated by constant false condition

Correction — Change #if 0 to #if 1

Unless you intended to deactivate the printf statement, one possible
correction is to reactivate the block of code in the #if #endif directive.
To reactivate the block, change #if 0 to #if 1.

#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{

int Count=0;

for(int i=0;1i < Size;i++)

{
if (Arr[i]>Cutoff)

{
Arr[i]=Cutoff;
Count++;

}

}

/* Fix: Replace #if 0 by #if 1 */

#if 1
if (Count==0)
{
printf("All values less than cutoff.");
}
#endif

return Count;

}

Command-Line Argument: deactivated_code
Information Type: string
Default: 'off"

Example: polyspace-bug-finder-nodesktop -checkers
deactivated_code

5-15

Code deactivated by constant false condition

See Also Dead code |

Related e “Review and Comment Results”
Examples

5-16

Dead code

Purpose

Description

Examples

Code cannot be reached along any execution path

Dead code occurs when a block of code cannot be reached along any
execution path. This error excludes directives such as #if 0, which you
can deliberately use to deactivate a code segment.

Dead code error

#include <stdio.h>

int Return_From_Table(int ch)

{
int table[5];

/* Create a table */
for(int i=0;i<=4;i++)
table[i]=i"2+i+1;

if(table[ch]>100) return O0;
/*Defect: Condition always false */

return table[ch];

}

The maximum value in the array table is 4°2+4+1=21, so the test
expression table[ch]>100 always evaluates to false. The return 0 in
the if statement is never executed.

Correction — Remove Dead Code

One possible correction is to remove the if condition from the code.

#include <stdio.h>
int Return_From_Table(int ch)

{
int table[5];

5-17

Dead code

5-18

Command-Line
Information

/* Create a table */
for(int i=0;i<=4;i++)
table[i]=1i"2+i+1;

/* Fix: Remove dead code */
return table[ch];

Argument: dead_code
Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
dead_code

See Also code deactivated by constant false condition |

Related
Examples

¢ “Review and Comment Results”

Declaration mismaich

Purpose Mismatch between function or variable declarations

Description Declaration mismatch occurs when a function or variable declaration
does not match other instances of the function or variable.
Examples Inconsistency Between Files
filel.c

int foo(void) {
return 1;

}
file2.c

double foo(void);

int bar(void) {
return (int)foo();

}
Correction — Align the Function Declarations

One possible correction is to change the function declarations so they
match. In this example, by changing the declaration of foo in file2.c to
match filel.c, the defect is fixed.

filel.c

int foo(void) {
return 1;

}
file2.c
int foo(void);

int bar(void) {
return foo();

}

5-19

Declaration mismaich

Command-Line Argument: decl _mismatch

Information Type: string
Default: 'off!
Example: polyspace-bug-finder-nodesktop -checkers
decl_mismatch

Related ¢ “Review and Comment Results”
Examples
Concepts ¢ “Programming Defects”

5-20

Deallocation of previously deallocated pointer

Purpose

Description

Examples

Memory freed more than once without allocation

Deallocation of previously deallocated pointer occurs when a
block of memory is freed more than once using the free function
without any intermediate allocation.

Deallocation of previously deallocated pointer error

#include <stdlib.h>

void allocate_and_free(void)

{

int* pi = (int*)malloc(sizeof(int));

if (pi == NULL) return;

*pi = 2;

free(pi);

free (pi);

/* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to.
The second free statement on pi releases a block of memory that has
been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)

{

int* pi = (int*)malloc(sizeof(int));
if (pi == NULL) return;

5-21

Deallocation of previously deallocated pointer

*pi = 2;
free(pi);
/* Fix: remove second deallocation */

Command-Line Argument: double deallocation
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
double_deallocation

See Also use of previously freed pointer |

Related e “Review and Comment Results”
Examples

5-22

Float conversion overflow

Purpose

Description

Examples

Command-Line
Information

See Also

Related
Examples

Concepts

Overflow when converting between floating point data types

Float conversion overflow occurs when converting a floating point
number to a smaller floating point data type. If there is not enough
memory to represent the original number, the conversion overflows.

The exact storage allocation for different floating point types depends
on your target operating system. See “Predefined Target Processor
Specifications”.

Converting from double to float

float convert(void) {

double diam = 1e100;
return (float)diam;

}

In the return statement, the variable diam of type double is converted to
a variable of type float. However, the value 17100 requires more than
the 32-bits of a float to be accurately represented.

Argument: float conv_ovfl

Type: string

Default: 'off'

Example: polyspace-bug-finder-nodesktop -checkers
float_conv_ovfl

Integer conversion overflow | Unsigned integer conversion
overflow | Sign change integer conversion overflow |

e “Review and Comment Results”

e “Numerical Defects”

5-23

Float overflow

5-24

Purpose

Description

Examples

Command-Line
Information

Overflow from operation between floating points

Float overflow occurs when an operation on floating point variables
exceeds the space available to represent the resulting value.

The exact storage allocation for different floating point types depends
on your target operating system. See “Predefined Target Processor
Specifications”.

Multiplication of Floats

float square(void) {

float val = FLT_MAX;
return val * val;

}

In the return statement, the variable val is multiplied by itself. The
square of the maximum float value cannot be represented by a float (the
return type for this function) because the value of val is the maximum
float value.

Correction — Different storage type

One possible correction is to store the operation’s result in a larger
data type. In this example, by returning a double instead of a float,
the overflow defect is fixed.

double square(void) {
float val = FLT_MAX;

return val * val;

Argument: float ovfl

Type: string

Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
float_ovfl

Float overflow

See Also Integer overflow | Unsigned integer overflow |
Related ¢ “Review and Comment Results”

Examples

Concepts ¢ “Numerical Defects”

5-25

Invalid use of standard library floating point routine

5-26

Purpose

Description

Examples

Wrong arguments to standard library function

Invalid use of standard library floating point routine occurs
when you use invalid arguments with a floating point function from the
standard library. This defect picks up:
¢ Rounding and absolute value routines
ceil, fabs, floor, fmod
® Fractions and division routines
fmod, modf
e Exponents and log routines
frexp, ldexp, sqrt, pow, exp, log, log10
¢ Trigonometry function routines
cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh,

acosh, asinh, atanh

Arc Cosine Operation

double arccosine(void) {

double degree = 5.0;
return acos(degree);

}

The input value to acos must be in the interval [-1,1]. This input
argument, degree, is outside this range.

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified
range. In this example, change the input value from degrees to radians
to fix this defect.

double arccosine(void) {

Invalid use of standard library floating point routine

Command-Line
Information

See Also

Related
Examples

Concepts

double degree 5.0;
double radian = degree*180/(3.14159);
return acos(radian);

Argument: float std 1lib

Type: string

Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
float_std_lib

Invalid use of standard library integer routine | Invalid
use of standard library memory routine | Invalid use of
standard library string routine | Invalid use of standard
library routine |

¢ “Review and Comment Results”

e “Numerical Defects”

5-27

Float division by zero

Purpose Dividing floating point number by zero

Description Float division by zero occurs when the denominator of a division
operation is a zero and a floating point number.

Examples Dividing an Integer by Zero

float fraction(float num)

{
float denom = 0.0;

float result = 0.0;

result = num/denom;

return result;

}
A division by zero error occurs at num/denom because denom is zero.
Correction — Check Before Division

float fraction(float num)

{
float denom = 0.0;
float result = 0.0;
if(((int)denom) != 0)
result = num/denom;
return result;
}

Before dividing, add a test to see if the denominator is zero, ensuring
that no division by zero defects occur. If denom is always zero, this
correction can produce a dead code defect in your Polyspace results.

5-28

Float division by zero

Correction — Change Denominator

One possible correction is to change the denominator value so that
denom is not zero.

float fraction(float num)

{
float denom = 2.0;
float result = 0.0;

result = num/denom;

return result;

Command-Line Argument: float_zero_div
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
float_zero_div

See Also 1nteger division by zero |

Related ¢ “Review and Comment Results”
Examples
Concepts * “Numerical Defects”

5-29

Use of previously freed pointer

Purpose Memory accessed after deallocation

Description Use of previously freed pointer occurs when a block of memory is
accessed after it is freed using the free function.

Examples Use of previously freed pointer error

#include <stdlib.h>
#include <stdio.h>
int increment_content_of_address(int base_val, int shift)
{
int j;
int* pi = (int*)malloc(sizeof(int));
if (pi == NULL) return O;

*pi = base_val;
free(pi);

j = *pi + shift;
/* Defect: Reading a freed pointer */

return j;

}

The free statement releases the block of memory that pi refers to.
Therefore, the dereference of pi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last
instance where it is accessed.

int increment_content_of_address(int base_val, int shift)
{

int j;

int* pi = (int*)malloc(sizeof(int));

if (pi == NULL) return O;

5-30

Use of previously freed pointer

*pi = base_val;

j = *pi + shift;
*pi = 0;

/* Fix: The pointer is freed after its last use */
free(pi);
return j;

Command-Line Argument: freed ptr
Information Type: string
Default: 'on'
Example: polyspace-bug-finder-nodesktop -checkers

freed_ptr

See Also Deallocation of previously deallocated pointer |

Related ¢ “Review and Comment Results”
Examples

5-31

Unreliable cast of function pointer

Purpose Function pointer cast to another function pointer with different
argument or return type

Description Unreliable cast of function pointer occurs when a function pointer
1s cast to another function pointer that has different argument or
return type.

This defect applies only if the code language for the project is C.
Examples Unreliable cast of function pointer error

#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr) (double))

{
double sum = 0.0;
double vy;
for (int 1 = 0; 1i <= 100; i++)
{
y = (*fptr)(1i*PI/100);
sum += y;
}
return sum / 100;
}

int main(void)

double (*fp) (double);
double sum;

fp = sin;

sum = Calculate_Sum(fp);
/* Defect: fp implicitly cast to int(*) (double) */

5-32

Unreliable cast of function pointer

printf("sum(sin): %f\n", sum);
return 0;

}

The function pointer fp is declared as double (*)(double). However
in passing it to function Calculate_Sum, fp is implicitly cast to int
(*) (double).

Correction — Avoid Function Pointer Cast

One possible correction is to ensure that the function pointer in the
definition of Calculate Sum has the same argument and return type
as fp. This step ensures that fp is not implicitly cast to a different
argument or return type.

#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: Ensure fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))

{
double sum = 0.0;
double vy;

for (int 1 = 0; 1i <= 100; i++)
{

y = (*fptr)(1i*PI/100);

sum += y;

}

return sum / 100;

}

int main(void)

{
double (*fp) (double);
double sum;

5-33

Unreliable cast of function pointer

fp = sin;
sum = Calculate_Sum(fp);
printf("sum(sin): %f\n", sum);

return 0;
}

Command-Line Argument: func_cast
Information Type: string

Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers

func_cast
Related ¢ “Review and Comment Results”
Examples

5-34

Integer conversion overflow

Purpose

Description

Examples

Overflow when converting between integer types

Integer conversion overflow occurs when converting an integer to
a smaller integer type. If there are not enough bytes to represent the
original constant, the conversion overflows.

The exact storage allocation for different integer types depends on your
operating system. See “Predefined Target Processor Specifications”.

Converting from int to char

char convert(void) {
int num = 1000000;

return (char)num;

}

In the return statement, the integer variable num is converted to a
char. However, 1000000 cannot be represented by an 8-bit or 16-bit
character because it requires at least 20 bits. So the conversion
operation overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that
can represent the entire number.

long convert(void) {
int num = 1000000;

return (long)num;

}

Command-Line Argument: int_conv_ovfl

Information

Type: string
Default: 'on'

5-35

Integer conversion overflow

Example: polyspace-bug-finder-nodesktop -checkers
int_conv_ovfl

See Also Float conversion overflow | Unsigned integer conversion
overflow | Sign change integer conversion overflow |

Related e “Review and Comment Results”
Examples
Concepts e “Numerical Defects”

5-36

Integer overflow

Purpose

Description

Examples

Command-Line
Information

Overflow from operation between integers

Integer overflow occurs when an operation on integer variables
exceeds the space available to represent the resulting value.

The exact storage allocation for different integer types depends on your
operating system. See “Predefined Target Processor Specifications”.

Addition of Maximum Integer

int plusplus(void) {

int var = INT_MAX;
var++;
return var;

}

In the third statement of this function, the variable var is increased by
one. But the value of var is the maximum integer value, so one plus the
maximum integer value cannot be represented by an int.

Correction — Different storage type

One possible correction is to change data types. Store the operation’s
result in a larger data type. In this example, by returning a long
instead of an int, the overflow error is fixed.

long plusplus(void) {

long lvar = INT_MAX;
lvar++;
return lvar;

Argument: int_ovfl

Type: string

Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
int_ovfl

5-37

Integer overflow

See Also Unsigned integer overflow | Float overflow |
Related e “Review and Comment Results”

Examples

Concepts e “Numerical Defects”

5-38

Invalid use of standard library integer routine

Purpose

Description

Examples

Wrong arguments to standard library function

Invalid use of standard library integer routine occurs when you
use invalid arguments with an integer function from the standard
library. This defect picks up:
¢ Character Conversion

toupper, tolower
® Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit

¢ Integer Division
div, 1ldiv
e Absolute Values

abs, labs

Absolute Value of Large Negative

int absoluteValue(void) {

int neg = INT_MIN;
return abs(neg);

}

The input value to abs is INT_MIN. The absolute value of INT_MIN is
INT_MAX+1. This number cannot be represented by the type int.

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data
type. In this example, change the input value to INT_MIN+1.

int absoluteValue(void) {

int neg = INT_MIN+1;

5-39

Invalid use of standard library integer routine

5-40

Command-Line
Information

See Also

Related
Examples

Concepts

return abs(neg);

Argument: int_std_lib

Type: string

Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
int_std_1lib

Invalid use of standard library floating point routine |
Invalid use of standard library memory routine | Invalid use
of standard library string routine | Invalid use of standard
library routine |

e “Review and Comment Results”

e “Numerical Defects”

Integer division by zero

Purpose

Description

Examples

Dividing integer number by zero

Integer division by zero occurs when the denominator of a division
operation is a zero.

Dividing an Integer by Zero

int fraction(int num)

{
int denom = 0;
int result = 0;
result = num/denom;
return result;

}

A division by zero error occurs at num/denom because denom is zero.
Correction — Check Before Division

int fraction(int num)

{
int denom = 0;
int result = 0;
if (denom != 0)
result = num/denom;
return result;
}

Before dividing, add a test to see if the denominator is zero, ensuring
that no division by zero defects occur. If denom is always zero, this
correction can produce a dead code defect in your Polyspace results.

5-41

Integer division by zero

Correction — Change Denominator

One possible correction is to change the denominator value so that
denom is not zero.

int fraction(int num)

{
int denom = 2
int result = 0;
result = num/denom;
return result;

}

Command-Line Argument: int_zero_div
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
int_zero_div

See Also Integer division by zero | Float division by zero |
Related ¢ “Review and Comment Results”

Examples

Concepts * “Numerical Defects”

5-42

Memory leak

Purpose

Description

Examples

Memory allocated dynamically not freed

Memory leak occurs when you do not free a block of memory allocated
through malloc, calloc, or realloc. If the memory is allocated in a
function func, the defect does not occur if:

¢ Within func, you free the memory using the free function.

® func returns the pointer assigned by malloc, calloc, or realloc

Memory leak error

The memory allocated through malloc and referenced by pi is neither
freed nor returned by the function assign_memory.

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)

{
int* pi = (int*)malloc(sizeof(int));
if (pi == NULL)

{
printf("Memory allocation failed");
return;
}
*pli = 42;
/* Defect: pi is not freed */

}

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the
free function. The free function must be called before the function
assign_memory terminates

#include<stdlib.h>

5-43

Memory leak

#include<stdio.h>

void assign_memory(void)
{
int* pi = (int*)malloc(sizeof(int));
if (pi == NULL)
{
printf("Memory allocation failed");
return;

}
*pi = 42;

/* Fix: Free the pointer pi*/
free(pi);

}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi
allows the function calling assign_memory to free the memory block
using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)

{
int* pi = (int*)malloc(sizeof(int));
if (pi == NULL)
{
printf("Memory allocation failed");
return(pi);
}
*pi = 42;
/* Fix: Return the pointer pi*/
return(pi);
}

5-44

Memory leak

Command-Line Argument: mem_leak
Information Type: string
Default: off

Example: polyspace-bug-finder-nodesktop -checkers
mem_leak

Related ¢ “Review and Comment Results”
Examples

5-45

Invalid use of standard library memory routine

Purpose Standard library memory function called with invalid arguments

Description Invalid use of standard library memory routine occurs when a
memory library function is called with invalid arguments.

Examples Invalid use of standard library memory routine error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)

{
char str1[10],str2[5];

printf ("Enter string:\n");
scanf("%s",str1);

memcpy (str2,str1,6);
/* Defect: Arguments of memcpy invalid: str2 has size < 6 */

return str2;

}

The size of string str2 is 5, but 6 characters of string str1 are copied
into str2 using the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it
accommodates the characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)

{
/* Fix: Declare str2 with size 6 */
char str1[10],str2[6];

5-46

Invalid use of standard library memory routine

printf ("Enter string:\n");
scanf("%s",str1);

memcpy (str2,str1,6);
return str2;

}
Command-Line Argument: mem_std_lib
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
mem_std_lib

See Also 1nvalid use of standard library string routine |

Related ¢ “Review and Comment Results”
Examples

5-47

Missing null in string array

5-48

Purpose

Description

Examples

String does not terminate with null character

Missing null in string array occurs when a string does not have
enough space to terminate with a null character '\0'. This defect can
cause various memory errors in your code, so is important to fix it.

This defect applies only for projects in C.

Array size is too small

void countdown(int i)

{
static char one[5] = "ONE";
static char two[5] = "TWO";
static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H',
'R', 'E', and 'E'. There is no room for the null character at the end
because three is only five bytes large.

Correction — Increase array size

One possible correction is to change the array size to allow for all five
characters plus a null character.

void countdown(int i)

{
static char one[5] = "ONE";
static char two[5] = "TWO";
static char three[6] = "THREE";
}

Correction — Change initialization method

One possible correction is to initialize the string by leaving the array
size blank. This initialization method correctly allocates enough
memory for all charaters and a terminating-null character.

void countdown(int 1)

Missing null in string array

Command-Line
Information

Related
Examples

Concepts

static char one[5] = "ONE";
static char two[5] = "TWO";
static char three[] = "THREE";

Argument: missing null char

Type: string

Default: 'off'

Example: polyspace-bug-finder-nodesktop
missing_null_char

“Review and Comment Results”

“Programming Defects”

-checkers

5-49

Missing or invalid return statement

Purpose Function does not return value though return type is not void.

Description Missing or invalid return statement occurs when a function does
not return a value along at least one execution path. If the return type
of the function is void, this error does not occur.

Examples Missing or invalid return statement error

int AddSquares(int n)
{
int i=0;
int sum=0;

if(n!=0)
{
for(i=1;i<=n;it++)
{
sum+=i"~2;
}

return(sum);

}
}

/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore,
the function AddSquares does not return any value if n is 0.

Correction — Place Return Statement on All Execution Paths

One possible correction is to return a value in all branches of the
if...else statement.

int AddSquares(int n)
{

int i=0;
int sum=0;

if(n!=0)

5-50

Missing or invalid return statement

{
for(i=1;i<=n;i++)
{
sum+=i"~2;

}

return(sum);

}

/*Fix: Place a return statement on all branches of if-else */
else

return 0;

Command-Line Argument: missing_return
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
missing_return

Related e “Review and Comment Results”
Examples

5-51

Non-initialized pointer

5-52

Purpose

Description

Examples

Pointer not initialized before dereference

Non-initialized pointer occurs when a pointer is not assigned an
address before dereference.

Non-initialized pointer error

#include <stdlib.h>

int* assign_pointer(int* prev)

{
int j = 42;
int* pi;
if (prev == NULL)
{
pi = (int*)malloc(sizeof(int));
if (pi == NULL) return NULL;
}
*pi = j;
/* Defect: Writing to uninitialized pointer */
return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However,
pi is dereferenced on all execution paths, irrespective of whether prev
is NULL or not.

Correction — Initialize Pointer on All Execution Paths

One possible correction is to assign an address to pi when prev is not
NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)

Non-initialized pointer

{
int j = 42;
int* pi;
if (prev == NULL)
{
pi = (int*)malloc(sizeof(int));
if (pi == NULL) return NULL;
}
/* Fix: Initialize pi in all branches of if statement */
else
pi = prev;
*pi = j;
return pi;
}

Command-Line Argument: non_init_ptr
Information Type:string
Default: 'On'
Example: polyspace-bug-finder-nodesktop -checkers

non_init_ptr

See Also Non-initialized variable |

Related e “Review and Comment Results”
Examples

5-53

Pointer to non-initialized value converted to const

pointer
Purpose Pointer to constant assigned address that does not contain a value
Description Pointer to non initialized value converted to const pointer
occurs when a pointer to a constant is assigned an address that does not
yet contain a value.
Examples Pointer to non initialized value converted to const pointer

5-54

error

#include<stdio.h>

void Display_Parity()
{
int num,parity;
const int* num_ptr = #
/* Defect: Address &num does not store any value */

printf ("Enter a number\n:");
scanf ("%d",&num) ;

parity=((*num_ptr)%2);
if(parity==0)

printf("The number is even.");
else

printf("The number is odd.");

num_ptr is declared as a pointer to a constant. However the variable num
does not contain any value when num_ptr is assigned the address &num.

Correction — Store Value in Address Before Assignment to
Pointer

One possible correction is to obtain the value of num from the user before
&num is assigned to num_ptr.

Pointer to non-initialized value converted to const
pointer

#include<stdio.h>

void Display_Parity()
{
int num,parity;
const int* num_ptr;

printf("Enter a number\n:");
scanf("%d",&num) ;

/* Fix: Assign &num to pointer after it receives a value */
num_ptr=#
parity=((*num_ptr)%2);
if (parity==0)
printf("The number is even.");
else
printf("The number is odd.");

The scanf statement stores a value in &num. Once the value is stored, it
is legitimate to assign &num to num_ptr.

Command-Line Argument: non_init_ptr_conv
Information Type: string

Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
non_init_ptr_conv

Related e “Review and Comment Results”
Examples

5-55

Non-initialized variable

Purpose Variable not initialized before use

Description Non-initialized variable occurs when a variable is not initialized
before its value is read.

Examples Non-initialized variable error

int get_sensor_value(void)

{
extern int getsensor(void);
int command;
int val;

command = getsensor();
if (command == 2)
{

val = getsensor();

}

return val;
/* Defect: val does not have a value if command is not 2 */

If command is not 2, the variable val is unassigned. In this case, the
return value of function get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that
its value is determined on all execution paths.

int get_sensor_value(void)

{
extern int getsensor(void);
int command;
/* Fix: Initialize val */
int val=0;

5-56

Non-initialized variable

Command-Line
Information

See Also

Related
Examples

command = getsensor();
if (command == 2)
{
val = getsensor();
}

return val;

}

val is assigned an initial value of 0. When command is not equal to 2,
the function get_sensor_value returns this value.

Argument: non_init var
Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers

non_init_var

Non-initialized pointer |

¢ “Review and Comment Results”

5-57

Null pointer

Purpose NULL pointer derefenced

Description Null pointer occurs when you use a pointer with a value of NULL as if it
points to a valid memory location.

Examples Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)

{
int* p=NULL;

*p=arr[0];
/* Defect: Null pointer dereference */

for(int i=0;i<Size;i+t)
{
if(arr[i] > (*p))
*p=arr[i];

}

return *p;

}

The pointer p is initialized with value of NULL. However, when the value
arr[0] is written to *p, p is assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before
Dereference

One possible correction is to initialize p with a valid memory address
before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)

{

5-58

Null pointer

/* Fix: Assign address to null pointer */
int* p=&arr[0];

for(int i=0;i<Size;i++)
{
if(arr[i] > (*p))
*p=arr[i];

}

return *p;

}

Command-Line Argument: null_ptr
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers

null_ptr
See Also Arithmetic operation with NULL pointer | Non-initialized
pointer |
Related e “Review and Comment Results”

Examples

5-59

Arithmetic operation with NULL pointer

Purpose

Description

Examples

5-60

Arithmetic operation performed on NULL pointer

Arithmetic operation with NULL pointer occurs when an
arithmetic operation involves a pointer whose value is NULL.

Arithmetic operation with NULL pointer error
#include<stdlib.h>
int Check_Next_Value(int *loc, int val)

{

int *ptr= *loc, found = O0;

if (ptr==NULL)

{
ptr++;
/* Defect: NULL pointer shifted */
if (*ptr==val) found=1;
}
return(found);

}

When ptr is a NULL pointer, the code enters the if statement body.
Therefore, a NULL pointer is shifted in the statement ptr++.

Correction — Avoid NULL Pointer Arithmetic

One possible correction is to perform the arithmetic operation when
ptr is not NULL.

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)

{

int *ptr= *loc, found = 0;

Arithmetic operation with NULL pointer

Command-Line
Information

/* Fix: Perform operation when ptr is not NULL */
if (ptr!=NULL)
{

ptr++;

if (*ptr==val) found=1;
}

return(found);

Argument: null _ptr_arith
Type: string
Default: 'off'

Example: polyspace-bug-finder-nodesktop -checkers
null_ptr_arith

See Also nNull pointer |

Related
Examples

¢ “Review and Comment Results”

5-61

Invalid use of standard library routine

Purpose Wrong arguments to standard library function

Description Invalid use of standard library routine occurs when you use invalid
arguments with a function from the standard library. This defect picks
up errors related to any other functions not covered by float, integer,
memory, or string standard library routines.

Examples Calling printf Without a String
void print_null(void) {

printf (NULL);
}

The function printf takes only string input arguments or format
specifiers. In this function, the input value is NULL, which is not
a valid string.

Correction — Use Correct Input Arguments

One possible correction is to change the input arguments to fit the
requirements of the standard library routine. In this example, the input
argument was changed to a character.

void print_null(void) {
char zero_val = '0';
printf(zero_val);

}
Command-Line Argument: other_std_lib
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
other_std_1ib

See Also Invalid use of standard library integer routine | Invalid
use of standard library floating point routine | Invalid use

5-62

Invalid use of standard library routine

of standard library memory routine | Invalid use of standard
library string routine |

Related ¢ “Review and Comment Results”
Examples
Concepts * “Other Defects”

5-63

Array access out of bounds

Purpose Array index outside bounds during array access

Description Array access out of bounds occurs when an array index falls outside
the range [0...array_size-1] during array access.

Examples Array access out of bounds error

#include <stdio.h>

void fibonacci(void)

{
int i;
int fib[10];
for (1 = 0; i < 10; it++)
{
if (1 < 2)
fib[i] = 1;
else
fib[i] = fib[i-1] + fib[i-2];
}
printf("The 10-th Fibonacci number is %i .\n", fib[i]);
/* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has
allowed values of [0,1,2,...,9]. The variable i has a value 10 when
it comes out of the for-loop. Therefore, the printf statement attempts
to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after
the for-loop.

#include <stdio.h>

5-64

Array access out of bounds

void fibonacci(void)

{
int 1i;
int fib[10];
for (i = 0; 1 < 10; it++)
{
if (i < 2)
fib[i] = 1;
else
fib[i] = fib[i-1] + fib[i-2];
}
/* Fix: Print fib[9] instead of fib[10] */
printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Command-Line Argument: out_bound_array

Information Type: string
Default: 'on'
Example: polyspace-bug-finder-nodesktop -checkers
out_bound_array

See Also Pointer access out of bounds |

Related e “‘Review and Comment Results”
Examples

5-65

Pointer access out of bounds

5-66

Purpose

Description

Examples

Pointer dereferenced outside its bounds

Pointer access out of bounds occurs when a pointer is dereferenced
outside its bounds.

When a pointer is assigned an address, a block of memory is associated
with the pointer. You cannot access memory beyond that block using
the pointer.

Pointer access out of bounds error

int* Initialize(void)
{

int arr[10];

int *ptr=arr;

for (int i=0; i<=9;i++)
{
ptr++;
*ptr=1i;
/* Defect: ptr out of bounds for i=9 */
}

return(arr);

}

ptr is assigned the address arr that points to a memory block of size
10*sizeof (int). In the for-loop, ptr is incremented 10 times. In the
last iteration of the loop, ptr points outside the memory block assigned
to it. Therefore, it cannot be dereferenced.

Correction — Ensure Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and
dereference of ptr.

int* Initialize(void)
{

int arr[10];

Pointer access out of bounds

int *ptr=arr;

for (int i=0; i<=9;i++)
{
/* Fix: Dereference pointer before increment */
*ptr=i;
ptr++;

}

return(arr);

}

After the last increment, even though ptr points outside the memory
block assigned to it, it is not dereferenced any more.

Command-Line Argument: out_bound ptr
Information Type: string
Default: 'on'
Example: polyspace-bug-finder-nodesktop -checkers

out_bound_ptr
See Also Array access out of bounds |

Related ¢ “Review and Comment Results”
Examples

5-67

Partially access array

Purpose Array partly read or written before end of scope

Description Partially access array occurs when an array is partially read or
written before the end of array scope. For arrays local to a function, the
end of scope occurs when the function ends.

Examples Partially access array error

int Calc_Sum(void)

{
int tab[5]={0,1,2,3,4},sum=0;
/* Defect: tab[4] is not read */
for (int i=0; i<4;i++) sum+=tab[i];

return(sum);

}

The array tab is only partially read before end of function Calc_Sum.
While calculating sum, tab[4] is not included.

Correction — Access All Elements of Array

One possible correction is to read all elements of array tab.

int Calc_Sum(void)
{
int tab[5]={0,1,2,3,4},sum=0;

/* Fix: Include tab[4] in calculating sum */
for (int i=0; i<5;i++) sum+=tab[i];

return(sum);

5-68

Partially access array

Command-Line Argument: partially access_array
Information Type: string
Default: 'off!

Example: polyspace-bug-finder-nodesktop -checkers
partially access_array

Related ¢ “Review and Comment Results”
Examples

5-69

Large pass-by-value argument

5-70

Purpose

Description

Examples

Large argument passed between functions by value

Large pass-by-value argument occurs when a large input argument
or return value is passed between functions by its value. For variables
larger than 64 bytes, pass the value by pointer or by reference to save
stack space and copy time.

Passing a Large struct Between Functions

typedef struct s_userid {
char name[2];
int idnumber([100];

} userid;

char username(userid first) {
return first.name[O0];

}

The large structure, userid, is passed to the function username.
Because userid is larger than 64 bytes, this function produces a large
pass-by-value defect.

Correction — Pass-By-Reference

One possible correction is to pass the argument by reference instead of
by value. In this example, the pointer to a userid structure is passed
instead of the actual structure.

typedef struct s_userid {
char name[2];
int idnumber[100];

} userid;

char username (userid *first) {
return (*first).name[0];

}

Large pass-by-value argument

Command-Line Argument: pass_by value

Information Type: string
Default: 'off!
Example: polyspace-bug-finder-nodesktop -checkers
pass_by_value

Related ¢ “Review and Comment Results”
Examples
Concepts * “Other Defects”

5-71

Unreliable cast of pointer

5-72

Purpose

Description

Examples

Pointer implicitly cast to different data type

Unreliable cast of pointer occurs when a pointer is implicitly cast
to a data type different from its declaration type. Such an implicit
casting can take place, for instance, when a pointer to data type char is
assigned the address of an integer.

This defect applies only if the code language for the project is C.

Unreliable cast of pointer error

#include <string.h>

void Copy_Integer_To_String()
{
int src[]1={1,2,3,4,5,6,7,8,9,10};
char buffer[]="Buffer_Text";
strcpy (buffer,src);
/* Defect: Implicit cast of (int*) to (char*) */

}

src is declared as an int* pointer. The strcpy statement, while
copying to buffer, implicitly casts src to char*.

Correction — Avoid Pointer Cast

One possible correction is to declare the pointer src with the same data
type as buffer.

#include <string.h>

void Copy_Integer_To_String()

{

/* Fix: Declare src with same type as buffer */

Char\ *SPC[1O]={II1 II,II2II, Il3|l , II4II,II5II,II6II, II7II , II8II,II9II,II10II};
char *buffer[10];

for(int i=0;i<10;i++)
buffer[i]="Buffer_Text";

Unreliable cast of pointer

for(int i=0;i<10;i++)
buffer[i]= src[i];

}

Command-Line Argument: ptr_cast
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
ptr_cast

See Also unreliable cast of function pointer |

Related ¢ “Review and Comment Results”
Examples

5-73

Wrong type used in sizeof

Purpose

Description

Examples

sizeof argument does not match pointer type

Wrong type used in sizeof occurs when the size specified for the block
of memory does not match the pointer type being initialized.

Allocate a Char Array With sizeof

void test_case_1(void) {
char* str;

str = malloc(sizeof(char*) * 5);
free(str);

}

In this example, memory is allocated for the character pointer str using
amalloc of five char pointers. However, str is a pointer to a character,
not a pointer to a character pointer. Therefore the sizeof argument,
char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type.
In this example, str is a character pointer, therefore the argument
must also be a character.

void test_case_1(void) {
char* str;

str = malloc(sizeof(char) * 5);
free(str);

}

Command-Line Argument: ptr_sizeof_mismatch

Information

5-74

Type: string
Default: 'on'

Wrong type used in sizeof

Example: polyspace-bug-finder-nodesktop -checkers
ptr_sizeof_mismatch

Related ¢ “Review and Comment Results”
Examples
Concepts ® “Programming Defects”

5-75

Qualifier removed in conversion

5-76

Purpose

Description

Examples

Variable qualifier is lost during conversion

Qualifier removed in conversion occurs during a conversion when
one variable has a qualifier and the other does not. For example, when
converting from a const int to an int, the conversion removes the
const qualifier.

This defect applies only for projects in C.
Cast of Character Pointers
void implicit_cast(void

)
const char cc, *pcc
char * quo;

&cc;

quo = &cc;
quo = pcc;
read(quo);

}

During the assignment to the character g, the variables, cc and pcc,
are converted from const char to char. The const qualifier is removed
during the conversion causing a defect.

Correction — Add Quadlifiers

One possible correction is to add the same qualifiers to the new
variables. In this example, changing g to a const char fixes the defect.

void implicit_cast(void)
const char cc, *pcc
const char * quo;

&cc;

quo = &cc;
quo = pcc;
read(quo);

Qualifier removed in conversion

Correction — Remove Qualifiers

One possible correction is to remove the qualifiers in the converted
variable. In this example, removing the const qualifier from the cc and
pcc initialization fixes the defect.

void implicit_basic_cast(void) {
char cc, *pcc = &cc;
char * quo;

quo = &cc;
quo pcc;

read(quo);

Command-Line Argument: qualifier_mismatch

Information Type: string
Default: 'on'
Example: polyspace-bug-finder-nodesktop -checkers
qualifier_mismatch

Related ¢ “Review and Comment Results”
Examples
Concepts ¢ “Programming Defects”

5-77

Race conditions

5-78

Purpose

Description

Examples

Command-Line
Information

Race conditions between multiple instances of the same variable

Race conditions occur in multitasking code when two parallel task
change the same variable. A race condition occurs because both tasks
are racing to be the first to use the variable.

This defect is associated with the multitasking and entry point options.

Simple Function Race

int var_for_rc;

void race_condition(void) {
var_for_rc++;

}

void task1(void) { race_condition(); }

void task2(void) { race_condition(); }

In this example, the tasks task1 and task2 were specified as the entry

points to the multitasking code. Both tasks call the same function

which uses external variable var_for_rc. A race condition occurs

becausevar_for_rc is changing in two parallel tasks.

Correction — Exclusive Task

One possible correction is to change which tasks are parallel and which
are exclusive. Change task1 and task?2 to be nonparallel multitasking
tasks. The code is the same, but how the code is built changes.

Argument: race_cond

Type: string

Default: 'off'

Example: polyspace-bug-finder-nodesktop -entry-points
task1,task2 -checkers race_cond

See Also “Multitasking” |

Related
Examples

¢ “Review and Comment Results”

Race conditions

Concepts * “Other Defects”

5-79

Shift of a negative value

5-80

Purpose

Description

Examples

Command-Line
Information

See Also shift

Shift operator on negative value

Shift of a negative value occurs when a bit-wise shift is used on a
negative number. Shifts can overwrite the sign bit that identifies a
number as negative.

Shifting a negative variable

int shifting(int val)
{
int res = -1;
return res << val;

}

In the return statement, the variable res is shifted a certain number
of bits to the left. However, because res is negative, the shift might
overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable
to unsigned. This correction eliminates the sign bit, so left shifting
does not affect the value.

int shifting(int val)
{

unsigned int res = -1;
return res << val

Argument: shift _neg
Type: string
Default: 'off'

Example: polyspace-bug-finder-nodesktop -checkers
shift_neg

operation overflow |

Shift of a negative value

Related ¢ “Review and Comment Results”
Examples
COI‘ICGPI‘S e “Numerical Defects”

5-81

Shift operation overflow

5-82

Purpose

Description

Examples

Command-Line
Information

Overflow from shifting operation

Shift operation overflow occurs when a shift operation exceeds the
space available to represent the resulting value.

The exact storage allocation for different data types depends on your
operating system. See “Predefined Target Processor Specifications”.

Left Shift of Integer

int left_shift(void) {

int foo = 38;
return 1 << foo0;

}

In the return statement of this function, bit-wise shift operation is
performed shifting 1 foo bits to the left. However, an int has only 32
bits, so the range of the shift must be between 0 and 31. Therfore, this
shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger
data type. In this example, by returning a long instead of an int, the
overflow defect is fixed.

long left_shift(void) {

int foo = 38;
return 1 << foo;

Argument: shift_ovfl
Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
shift_ovfl

Shift operation overflow

Related ¢ “Review and Comment Results”
Examples
COI‘ICGPI‘S e “Numerical Defects”

5-83

Sign change integer conversion overflow

5-84

Purpose

Description

Examples

Overflow when converting between signed and unsigned integers

Sign change integer conversion overflow occurs when converting
an unsigned integer to a signed integer. If there are not enough bytes

to represent both the original constant and the sign bit, the conversion

overflows.

The exact storage allocation for different integer types depends on your

operating system. See “Predefined Target Processor Specifications”.

Convert from unsigned char to char

char sign_change(void) {
unsigned char count = 255;

return (char)count;

In the return statement, the unsigned character variable count is
converted to a signed character. However, char has 8 bits, 1 for the
sign of the constant and 7 to represent the number. The conversion
operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int,

there are enough bits to represent the sign and the number value.

int sign_change(void) {
unsigned char count = 255;

return (int)count;

}

Command-Line Argument: sign_change

Information

Type: string
Default: 'on'

Sign change integer conversion overflow

Example: polyspace-bug-finder-nodesktop -checkers
sign_change

See Also Float conversion overflow | Unsigned integer conversion
overflow | Integer conversion overflow |

Related e “Review and Comment Results”
Examples
Concepts e “Numerical Defects”

5-85

Invalid use of standard library string routine

Purpose Standard library string function called with invalid arguments

Description Invalid use of standard library string routine occurs when a string
library function is called with invalid arguments.

Examples Invalid use of standard library string routine error

#include <string.h>
#include <stdio.h>

char* Copy_String(void)
{

char *res;
char gbuffer[5],text[20]="ABCDEFGHIJKL";

res=strcpy(gbuffer,text);
/* Error: Size of text is less than gbuffer */

return(res);

}

The string text is larger in size than gbuffer. Therefore, the function
strcpy cannot successfully copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with
equal or larger size than the source string text.

#include <string.h>
#include <stdio.h>

char* Copy_String(void)
{

char *res;
/*Fix: Ensure that gbuffer has equal or larger size than text */
char gbuffer[20],text[20]="ABCDEFGHIJKL";

5-86

Invalid use of standard library string routine

res=strcpy(gbuffer,text);

return(res);

}
Command-Line Argument: str_std_lib
Information Type: string
Default: 'on'
Example: polyspace-bug-finder-nodesktop -checkers
str_std_1ib

See Also 1nvalid use of standard library memory routine |

Related e “‘Review and Comment Results”
Examples

5-87

Format string specifiers and arguments mismatch

5-88

Purpose

Description

Examples

String specifiers do not match corresponding arguments

Format string specifiers and arguments mismatch occurs

when the parameters in the format specification do not match their
corresponding arguments. For example, an argument of type unsigned
long must have a format specification of %1u.

Printing a Float

void string_format(void) {
unsigned long fst = 1;

printf("sd\n", fst);
}

In the printf statement, the format specifier, %d, does not match the
data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %1u format specifier. This specifier
matches the unsigned integer type and long size of fst.

void string_format(void) {
unsigned long fst = 1;

printf("%slu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format
specifier. Convert fst to an integer to match the format specifier and
print the value 1.

void string_format(void) {

unsigned long fst = 1;

Format string specifiers and arguments mismatch

printf("%sd\n", (int)fst);

}
Command-Line Argument: string_format
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
string_format

See Also 1nvalid use of standard library string routine |

Related ¢ “Review and Comment Results”
Examples

Concepts * “Other Defects”

External ® http://en.cppreference.com/w/cpp/io/c/fprintf
Web Sites

5-89

http://en.cppreference.com/w/cpp/io/c/fprintf

Unsigned integer conversion overflow

5-90

Purpose

Description

Examples

Overflow when converting between unsigned integer types

Unsigned integer conversion overflow occurs when converting

an unsigned integer to a smaller unsigned integer type. If there are
not enough bytes to represent the original constant, the conversion

overflows.

The exact storage allocation for different integer types depends on your
operating system. See “Predefined Target Processor Specifications”.

Converting from int to char

unsigned char convert(void) {
unsigned int unum = 1000000U;

return (unsigned char)unum;

}

In the return statement, the unsigned integer variable unum is converted
to an unsigned character type. However, the conversion overflows
because 1000000 requires at least 20 bits. The C programming language
standard does not view unsigned overflow as an error because the
program automatically reduces the result by modulo the maximum
possible value plus 1. In this example, unum is reduced by modulo 2*8
because a character data type can only represent 2°8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can
represent the entire number. For example, long.

unsigned long convert(void) {
unsigned int unum = 1000000U;

return (unsigned long)unum;

}

Command-Line Argument: uint_conv_ovfl

Information

Type: string

Unsigned integer conversion overflow

Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
uint_conv_ovfl

See Also Float conversion overflow | Integer conversion overflow |
Sign change integer conversion overflow |

Related ¢ “Review and Comment Results”
Examples
Concepts e “Numerical Defects”

5-91

Unsigned integer overflow

Purpose Overflow from operation between unsigned integers

Description Unsigned integer overflow occurs when an operation on unsigned
integer variables exceeds the space available to represent the
resulting value.The exact storage allocation for different integer types
depends on your operating system. See “Predefined Target Processor
Specifications”.

Examples Add One to Maximum Unsigned Integer
unsigned int plusplus(void) {

unsigned uvar = UINT_MAX;
uvar++;
return uvar;

}

In the third statement of this function, the variable uvar is increased
by 1. However, the value of uvar is the maximum unsigned integer
value, so 1 plus the maximum integer value cannot be represented by
an unsigned int. The C programming language standard does not
view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum possible value plus 1. In this
example, uvar is reduced by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data
type. In this example, by returning an unsigned long instead of an
unsigned int, the overflow error is fixed.

unsigned long plusplus(void) {
unsigned uvar = UINT_MAX;

unsigned long ulvar = uvar++;
return ulvar;

5-92

Unsigned integer overflow

Command-Line Argument: uint_ovfl

Information Type: string
Default: 'on'
Example: polyspace-bug-finder-nodesktop -checkers
uint_ovfl

See Also Integer overflow | Float overflow |

Related ¢ “Review and Comment Results”

Examples

Concepts ¢ “Numerical Defects”

5-93

Uncalled function

5-94

Purpose

Description

Examples

Function with static scope never called in file

Uncalled function occurs when a static function is not called in
the same file where it is defined.

Uncalled function error

Save the following code in the file Initialize Value.c

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)

/* Defect: Function never called */
{
int input;
printf("Enter an integer:");
scanf("%d",&input);
return(input);

}

void main()

{

int num;
num=0;

printf("The value of num is %d",num);

}

The static function Initialize is never called in the file
Initialize_Value.c.

Correction — Call Function at Least Once

One possible correction is to call Initialize at least once in the file
Initialize Value.c.

#include <stdlib.h>

Uncalled function

#include <stdio.h>

static int Initialize(void)
{
int input;
printf("Enter an integer:");
scanf("%d",&input);
return(input);

}

void main()
{
int num;

/* Fix: Call static function Initialize */
num=Initialize();

printf("The value of num is %d",num);

}

Command-Line Argument: uncalled_func
Information Type: string
Default: 'off'

Example: polyspace-bug-finder-nodesktop -checkers
uncalled_func

Related e “Review and Comment Results”
Examples

5-95

Unprotected dynamic memory allocation

Purpose Pointer returned from dynamic allocation not checked for NULL value

Description Unprotected dynamic memory allocation occurs when the code
does not check for the success of a dynamic memory allocation.

When memory is dynamically allocated using malloc, calloc, or
realloc, it returns a value NULL if the requested memory is not
available. If the code following the allocation accesses the memory block
without checking for the NULL value, this access is not protected from
failures.

Examples Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)

{
int* p = (int*)calloc(5, sizeof(int));
p = 2;
/* Defect: p is not checked for NULL value */
free(p);

}

If the memory allocation is not successful, the function calloc returns
NULL to p. Before accessing the memory through p, the code does not
check whether memory allocation has been successful.

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before
dereference.

#include <stdlib.h>
void Assign_Value(void)

{

int* p = (int*)calloc(5, sizeof(int));

5-96

Unprotected dynamic memory allocation

/* Fix: Check if p is NULL */
if(p!=NULL) *p = 2;

free(p);
}

Command-Line Argument: unprotected_memory_allocation
Information Type: string
Default: off

Example: polyspace-bug-finder-nodesktop -checkers
unprotected_memory_allocation

Related e “Review and Comment Results”
Examples

5-97

Write without further read

5-98

Purpose

Description

Examples

Variable never read after assignment

Write without further read occurs when a value assigned to a
variable is never read.

Write without further read error

void sensor_amplification(void)

{
extern int getsensor(void);
int level;
level = 4 * getsensor();
/* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(),
it is never read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the
assignment.

void sensor_amplification(void)

{
extern int getsensor(void);
int level;
level = 4 * getsensor();
/* Fix: Use level after assingment */
printf('The value is %d', level)
}

The variable level is printed, reading the new value.

Write without further read

Command-Line Argument: useless write
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
useless_write

Related ¢ “Review and Comment Results”
Examples

5-99

Variable shadowing

Purpose Variable hides another variable of same name with nested scope

Description Variable shadowing occurs when a variable hides another variable of
the same name with nested scope.

Examples Variable Shadowing error

#include <stdio.h>
int fact[5]={1,2,6,24,120};

int factorial(int n)

{
int fact=1;
/*Defect: Local variable hides global array with same name */

for(int i=1;i<=n;i++)
fact*=i;

return(fact);

}

Inside the factorial function, the integer variable fact hides the
global integer array fact.

Correction — Change Variable Name

One possible correction is to change the name of one of the variables,
preferably the one with more local scope.

#include <stdio.h>
int fact[5]={1,2,6,24,120};

int factorial(int n)

{
/* Fix: Change name of local variable */
int f=1;

5-100

Variable shadowing

for(int i=1;i<=n;i++)

f*=1i;
return(f);
}
Command-Line Argument: var_shadowing
Information Type: string
Default: 'on'

Example: polyspace-bug-finder-nodesktop -checkers
var_shadowing

Related e “Review and Comment Results”
Examples

5-101

Variable shadowing

5-102

Functions

PolyspaceAnnotation

6-2

Purpose

Syntax

Description

Limitations

Annotate Simulink blocks with known Polyspace results

PolyspaceAnnotation('type',typeValue, 'kind',kindValue,Name,
Value)

PolyspaceAnnotation('type',typeValue, 'kind',kindValue,Name,
Value)adds an annotation of type typeValue and kind kindValue

to the currently selected block in the model. You can also specify a
different block using a Name,Value pair argument. You can also add
notes about a priority classification, an action status, or other comments
using Name ,Value pairs.

In the generated code associated with the annotated block, code
comments are added before and after the lines of code. Polyspace reads
these comments and marks any Polyspace results of the specified kind
with the annotated information.

When you add annotations, you can identify known errors and coding
rule violations to focus on new results.

® You can have only one annotation per block. If a block produces both
a rule violation and an error, only one type can be annotation.

¢ Even though you apply annotations to individual blocks, the scope of
the annotation may be larger. The generated code from one block can
overlap with another causing the annotation to also overlap.

For example, consider this model.

PolyspaceAnnotation

b

Cut

In3

The first summation block has a Polyspace annotation, but the
second does not. However, the associated generated code adds all
three inputs in one line of code. Therefore, the annotation justifies
both summations:

/*

* polyspace:begin<RTE:OVFL:Medium:Fix>

*/

annotate_y.Out1 = (annotate_u.In1 + annotate_U.In2) + annotate_U.In:

/* polyspace:end<RTE:OVFL:Medium:Fix> */
Input typeValue - type of result
Arguments 'MISRA-C' | 'MISRA-CPP' | 'JSF'
The type of result with which to annotate the block, specified as:
e "MISRA-C' for MISRA C coding rule violations (C code only).
e "MISRA-CPP' for MISRA C++ coding rule violations (C++ code only).
e "JSF' for JSF C++ coding rule violations (C++ code only).
Example: “type', 'MISRA-C'

kindValue - specific check or coding rule
check acronym | rule number

PolyspaceAnnotation

6-4

The specific check or coding rule specified by the acronym of the check
or the coding rule number. For the specific input for each type of
annotation, see the following table.

Type Value Kind Values

"MISRA-C' Use the rule number you want to annotate. For
example, '2.2".

For the list of supported MISRA C rules and their
numbers, see “MISRA C Coding Rules”.

"MISRA-CPP' Use the rule number you want to annotate. For
example, '0-1-1".

For the list of supported MISRA C++ rules and
their numbers, see “MISRA C++ Coding Rules”.

"JSF! Use the rule number you want to annotate. For
example, '3".

For the list of supported JSF C++ rules and their
numbers, see “JSF C++ Coding Rules”.

Example:
PolyspaceAnnotation('type', '"MISRA-CPP', 'kind','1-2-3")

Data Types
char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

Example: ‘block’, MyModel\Sum’, ‘status’,’fix’

‘block’ - block to be annotated
gcb (default) | block name

PolyspaceAnnotation

Examples

Block to be annotated specified by the block name. If you do not use this
option, the block returned by the function gcb is annotated.

Example: 'block', 'MyModel\Sum'
‘class’ - classification of the check
"high' | 'medium' | 'low' | 'not a defect' | 'unset'

Classification of the check specified as high, medium, low, not a
defect, or unset.

Example: 'class', 'high'

‘status’ - action status

'undecided' | 'investigate' | 'fix' | 'improve' | 'restart with
different options' | 'justify with annotation' | 'no action
planned' | 'other!'

Action status of the check specified as undecided, investigate,
fix, improve, restart with different options, justify with
annotation, no action planned, or other.

Example: 'status', 'no action planned'
‘comment’ - additional comments
string

Additional comments specified as a string. The comments provide more
information about why the results are justified.

Example: 'comment', 'defensive code'

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the
annotation in the analysis results.

At the MATLAB command line, load and open the example model
WhereAreTheErrors_v2:

WhereAreTheErrors_v2

PolyspaceAnnotation

Add an annotation to the switch block to annotate any violations
to MISRA C rule 13.7. Also, add to the annotation a comment, a
classification, and a status.

PolyspaceAnnotation('type', 'Misra-C', 'kind', '13.7','block',...
‘WhereAreTheErrors_v2/Switchi', 'status', 'improve', 'comment', 'look into 1le

In the WhereAreTheErrors_v2 model in Simulink®, you can see a
Polyspace annotation added to the switch block.

At the MATLAB command line, generate code for the model:
slbuild('WhereAreTheErrors_v2');
Run an analysis on your model:

pslinkrun('WhereAreTheErrors_v2');

After the analysis is finished, open the results in the Polyspace
environment:

PolySpaceViewer ('WhereAreTheErrors_v2');

Results 10-14 are all MISRA C 13.7 rule violations. The annotation
information that you added to the switch block appears in all four
results, because all four results are from the switch block.

See Also pslinkoptions | PolySpaceViewer | pslinkrun | gcb

Concepts o “MATLAB Functions for Polyspace Batch Runs”

6-6

pslinkoptions

Purpose
Syntax

Description

Input
Arguments

Create options object to customize Polyspace runs from MATLAB
command line

opts = pslinkoptions(codegen)
opts pslinkoptions(model)

opts = pslinkoptions(codegen) returns an options object with the
configuration options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the
configuration options for the Simulink model model.

codegen - Code generator
1 ec 1 | 1 tl 1

Code generator, specified as either 'ec' for Embedded Coder® or 't1'
for TargetLink®. Each argument creates a Polyspace options object with
configuration options specific to that code generator.

For a description of all configuration options and their values, see .
Example: embedded coder_opt = pslinkoptions('ec')
Example: target _link opt = pslinkoptions('tl')

Data Types

char

model - Simulink model

model name

Simulink model, specified by the model name. Creates a Polyspace
options object with the configuration options of that model. If no options
have been set, the object has all default configuration options. If a
code generator has been set, the object has the default options for that
code generator.

For a description of all configuration options and their values, see .

Example: model opt = pslinkoptions('my_model')

pslinkoptions

Data Types

char
Output opts - Polyspace configuration options
Arguments options object

Polyspace configuration options, returned as an options object. The
object is used with pslinkrun to run a Polyspace from the MATLAB
command line.

The following table provides possible values and a description for each
configuration option. Depending on the code generator, the object will
have different configuration options. The value in curly brackets {} is
the default.

Configuration Option Values Description
ResultDir {'C:\Polyspace Results)\ Specify location of results
results $ModelName$'} folder. Can be either an

absolute path or a path
relative to the current

folder.
VerificationSettings {'PrjConfig'} | Specify checking of coding
'"PrjConfigAndMisraAGC' rules for C: 'PrjConfig’
| 'PrjConfigAndMisra’ | — Inherit all options from
'MisraAGC' | 'Misra‘’ project configuration and

run complete analysis.

‘PrjConfigAndMisraAGC'
— Inherit all options from
project configuration,
enable MISRA AC AGC
rule checking, and run
complete analysis.

‘PrjConfigAndMisra’' —
Inherit all options from
project configuration,
enable MISRA C rule

pslinkoptions

Configuration Option

Values

Description

checking, and run
complete analysis.

'MisraAGC' — Enable
MISRA AC AGC rule
checking, and run
compilation phase only.

'Misra' — Enable MISRA
C rule checking, and run
compilation phase only.

OpenProjectManager

{false} | true

Open Polyspace Metrics
or Project Manager to
monitor the progress.
Afterward, you can switch
to the Results Manager
perspective to review the
results.

AddSuffixToResultDir

{false} | true

Modify location of results
folder by appending a
unique number to the
folder name instead of

overwriting an existing
folder.

EnableAdditionalFilelLis

t{false} | true

Specify whether
additional files must be
analyzed. You can specify
these additional files with
the AdditionalFileList
option

AdditionalFilelList

{0x1 cell}

List additional files to
analyze.

pslinkoptions

Configuration Option

Values

Description

InputRangeMode

{'DesignMinMax'} |
'"FullRange'

Specify whether to use
data ranges defined in
blocks and workspace or
treat inputs as full-range
values.

ParamRangeMode

{'None'} | 'DesignMinMax'

Specify whether to

use constant values of
parameters specified in
the code, or use a range
defined in blocks and
workspace.

OutputRangeMode

{'None'} | 'DesignMinMax'

Specify whether to apply
assertions to outputs
(using a range defined in
blocks and workspace).

VerificationMode

{'BugFinder'}
'CodeProver'

Specify whether to run a
Bug Finder analysis or
Code Prover verification.

AutoStubLUT
Only for TargetLink

{false} | true

Specify whether to include
Lookup Table code in the
analysis.

6-10

pslinkoptions

Configuration Option

Values

Description

ModelRefVerifDepth
Only for Embedded Coder

{'Current model only'} |
I1I | I2I | I3I | IAlll

Specify analysis of
generated code with
respect to model reference
hierarchy levels.

ModelRefByModelRefVerif
Only for Embedded Coder

{false} | true

Specify whether to
analyze code from models
within model reference
hierarchies jointly or
separately.

CxxVerificationSettings

Only for Embedded Coder

{'PrjConfig'} |
'PrjConfigAndMisraCxx'
| 'PrjConfigAndJSF' |
'"MisraCxx' | 'JSF'

Specify checking of
coding rules for C++:
'PrjConfig' — Inherit
all options from project
configuration and run
complete analysis.

'PrjConfigAndMisraCxx"’
— Inherit all options from
project configuration,
enable MISRA C++

rule checking, and run
complete analysis.

'PrjConfigAndJSF' —
Inherit all options from
project configuration,
enable JSF rule checking,
and run complete
analysis.

'MisraCxx' — Enable
MISRA C++ rule
checking, and run
compilation phase only.

6-11

pslinkoptions

Configuration Option Values Description

'JSF' — Enable JSF
rule checking, and run
compilation phase only.

Examples Use a Simulink model to create and edit an options objects
Load the Simulink model psdemo_model link_ sl
load_system('psdemo_model link_sl_v2')

From the MATLAB command line, create a Polyspace options object
from the model:

model_opt pslinkoptions('psdemo_model link_sl_v2')

model opt

ResultDir: 'results $ModelName$'
VerificationSettings: 'PrjConfig'
OpenProjectManager: O
AddSuffixToResultDir: O
EnableAdditionalFilelList: O
AdditionalFilelList: {Ox1 cell}
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None’
OutputRangeMode: 'None'
VerificationMode: 'BugFinder’
ModelRefVerifDepth: 'Current model only'
ModelRefByModelRefVerif: O
CxxVerificationSettings: 'PrjConfig'

The model is already configured for Embedded Coder, so only the
Embedded Coder configuration options appear.

Change the results folder name option:

6-12

pslinkoptions

model opt.ResultDir = 'results_v1_$ModelName$';

model opt =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelist:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:

Set the OpenProjectManager to true, to monitor progress in the

Polyspace interface.

model opt.OpenProjectManager

model_opt =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:

'results_v1_$ModelName$'
'PrjConfig’

0

0

0

{0x1 cell}
'DesignMinMax’
"None'

"None'

'BugFinder'

"Current model only'
0

'PrjConfig’

= true

‘results_v1_$ModelName$'
'"PrjConfig’

1

0

0

{0x1 cell}
'DesignMinMax’
"None'

"None'

'BugFinder'

"Current model only'
0

6-13

pslinkoptions

6-14

CxxVerificationSettings:

'"PrjConfig'

Create and edit an options object for Embedded Coder at

the command line

Create a Polyspace options object called new_opt with Embedded Coder

parameters:

new_opt pslinkoptions('ec')

new_opt

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:

'results_$ModelName$'
'PrjConfig’

0

0

0

{0x1 cell}
'DesignMinMax
‘None'

‘None'

'BugFinder'

'Current model only'
0

'PrjConfig’

Set the OpenProjectManager option to true to follow the progress in the

Polyspace interface:
new_opt.OpenProjectManager =
new_opt =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelist:
AdditionalFilelList:

true

'results_$ModelName$'
'PrjConfig’

1

0
0
{0x1 cell}

pslinkoptions

InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:

Change the configuration to check for both run-time errors and MISRA

C coding rule violations:

'DesignMinMax’
"None'

"None'

'BugFinder'

'Current model only'
0

'PrjConfig’

new_opt.VerificationSettings = 'PrjConfigAndMisra’

new_opt =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:

'results_$ModelName$'
'"PrjConfigAndMisra’
1

0

0

{O0x1 cell}
'DesignMinMax
"None'

"None'

'BugFinder'

"Current model only'
0

CxxVerificationSettings: 'PrjConfig'
See Also PolySpaceViewer | pslinkrun | PolyspaceAnnotation
Concepts e “MATLAB Functions for Polyspace Batch Runs”

6-15

pslinkrun

6-16

Purpose

Syntax

Description

Input
Arguments

Run Polyspace analysis on generated code from MATLAB command line

resultsFolder = pslinkrun

resultsFolder pslinkrun(system)

resultsFolder = pslinkrun(system,opts)
resultsFolder pslinkrun(system,opts,asModelRef)

resultsFolder = pslinkrun on generated code from the current
system and returns the location of the results folder. It uses the analysis
options associated with the current system. The current system, or
model, is the system returned by the command bdroot.

resultsFolder = pslinkrun(system) runs Polyspace on the code
generated from the model or subsystem specified by system. It uses
the analysis options associated with system.

resultsFolder = pslinkrun(system,opts) analyzes system using
the analysis options from the options object opts.

resultsFolder = pslinkrun(system,opts,asModelRef) uses
asModelRef to specify which type of generated code to analyze,
standalone code or model reference code. This option is useful when you
want to analyze only a referenced model instead of an entire model
hierarchy.

system - Model or system
bdroot (default) | model or system name

Model or system that you want to analyze, specified as a string, with
the model or system name in single quotes. The default value is the
system returned by bdroot.

Example: resultsFolder = pslinkrun('demo') where demo is the
name of a model.

pslinkrun

Output
Arguments

Data Types
char

opts - Analysis options
options associated with system (default) | Polyspace options object

Analysis options for the analysis, specified as an options object or the
options already associated with the model or system. The function
pslinkoptions creates an options object. You can customize the options
object by changing the

Example: pslinkrun('demo', opts_demo) where demo is the name of
a model and opts_demo is an options object.

asModelRef - Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

e [f asModelRef is false (default), Polyspace analyzes code generated
as standalone code. This option is equivalent to choosing Verify
Code Generated For > Model in the Simulink Polyspace options.

e [f asModelRef is true, Polyspace analyzes code generated as model
referenced code. This option is equivalent to choosing Verify Code
Generated For > Referenced Model in the Simulink Polyspace
options.

Data Types

logical

resultsFolder - Variable for location of the results folder
string

Variable for location of the results folder, specified as a string. The
default value of this variable is results_$ModelName$. You can change
this value in the configuration options using pslinkoptions.

Data Types
char

6-17

pslinkrun

Examples Run Polyspace from the Command Line

Use a Simulink model to generate code, set configuration options, and
then run an analysis from the command line.

Create a variable model to store the name of the Polyspace example
model, WhereAreTheErrors_v2:

model = 'WhereAreTheErrors_v2';

This step is not necessary to use the function, but will make the rest of
the example easier.

Load the model:

load_system(model);

From the MATLAB command line, build the model to generate code:

slbuild(model);

Create a Polyspace options object from the model:

opts pslinkoptions(model)

opts =

ResultDir: 'results $ModelName$'
VerificationSettings: 'PrjConfig'
OpenProjectManager: O
AddSuffixToResultDir: O
EnableAdditionalFilelList: O
AdditionalFilelList: {O0x1 cell}
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None’
OutputRangeMode: 'None'
VerificationMode: 'CodeProver'
ModelRefVerifDepth: 'Current model only'
ModelRefByModelRefVerif: O

6-18

pslinkrun

CxxVerificationSettings:

'PrjConfig’

Change the configuration to run a Bug Finder analysis instead of a

Code Prover verification:

opts.VerificationMode = 'BugFinder'
opts =
ResultDir: 'results_ $ModelName$'
VerificationSettings: 'PrjConfig'
OpenProjectManager: O
AddSuffixToResultDir: 0O
EnableAdditionalFilelList: O
AdditionalFilelList: {Ox1 cell}
InputRangeMode: 'DesignMinMax'
ParamRangeMode: 'None'
OutputRangeMode: 'None'
VerificationMode: 'BugFinder'
ModelRefVerifDepth: 'Current model only'
ModelRefByModelRefVerif: 0O
CxxVerificationSettings: 'PrjConfig'

Run Polyspace using your options object:

results =

pslinkrun(model,opts)

The results are saved to the folder results_WhereAreTheErrors_v2.

Build and Analyze Referenced Model Code from the

Command Line

Use a Simulink model to generate reference code, set configuration
options, and then run an analysis from the command line.

Create a variable model to store the name of the Polyspace example

model, WhereAreTheErrors_v2:

model = 'WhereAreTheErrors_v2';

6-19

pslinkrun

6-20

This step is not necessary to use the function, but will make the rest of

the example easier.
Load the model:

load_system(model)

From the MATLAB command line, build the model to generate code as

if it 1s referenced by another model:

slbuild(model, 'ModelReferenceRTWTargetOnly')

Create a Polyspace options object from the model:

opts pslinkoptions(model)

opts =

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:

'results_$ModelName$'
'PrjConfig’

0

0

0

{0x1 cell}
'DesignMinMax’
"None'

"None'

'CodeProver'
"Current model only'
0

'PrjConfig’

Change the configuration to run a Bug Finder analysis instead of a

Code Prover verification:

opts.VerificationMode = 'BugFinder'

opts =

pslinkrun

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:

Run Polyspace software:

'results_$ModelName$'
'PrjConfig’

0

0

0

{0x1 cell}
'DesignMinMax
"None'

"None'

'BugFinder'

'Current model only'
0

'PrjConfig’

results = pslinkrun(model,opts,true)

The results are saved to the folder results_mr_WhereAreTheErrors_v2

See Also pslinkoptions | PolySpaceViewer | PolyspaceAnnotation |
bdroot
Concepts e “MATLAB Functions for Polyspace Batch Runs”

6-21

PolySpaceViewer

6-22

Purpose
Syntax

Description

Input
Arguments

Examples

Open analysis results in the Polyspace environment
PolySpaceViewer(system)

PolySpaceViewer(system) opens the Polyspace results associated
with the model or subsystem system in the Polyspace environment. If
system has not been analyzed, Polyspace opens to the Project Manager
perspective.

system - Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.

Example: PolySpaceViewer (myModel')

Open Results in the Polyspace environment from the
Command Line

Use the preconfigured model WhereAreTheErrors_v2 to run a Polyspace
analysis and open the results in the Polyspace environment.

Load the model WhereAreTheErrors_v2:
load_system('WhereAreTheErrors_v2')
Open the Polyspace Viewer:

PolySpaceViewer ('WhereAreTheErrors_v2')

The Polyspace environment opens to the Project Manager page because
the model does not yet have Polyspace results.

Build the model to generate C code:

slbuild('WhereAreTheErrors_v2');

Create a Polyspace options object to set the configuration options:

PolySpaceViewer

config

config

ResultDir:
VerificationSettings:
OpenProjectManager:
AddSuffixToResultDir:
EnableAdditionalFilelList:
AdditionalFilelList:
InputRangeMode:
ParamRangeMode:
OutputRangeMode:
VerificationMode:
ModelRefVerifDepth:
ModelRefByModelRefVerif:
CxxVerificationSettings:

Change the analysis options to also check for MISRA coding rule

violations:

config.VerificationSettings =

pslinkoptions('WhereAreTheErrors_v2')

'results_$ModelName$'
'PrjConfig’

0

0

0

{0x1 cell}
'DesignMinMax’
"None'

"None'

'CodeProver'
'Current model only'
0

'PrjConfig’

'PrjConfigAndMisra’;

Change the analysis options to run a Bug Finder analysis:

config.VerificationMode = 'BugFinder’;
config =
ResultDir: 'results_$ModelName$'
VerificationSettings: 'PrjConfigAndMisra’
OpenProjectManager: O
AddSuffixToResultDir: O
EnableAdditionalFilelList: O
AdditionalFileList: {Ox1 cell}
InputRangeMode: 'DesignMinMax'’
ParamRangeMode: 'None’
OutputRangeMode: 'None'

PolySpaceViewer

VerificationMode: 'BugFinder'
ModelRefVerifDepth: 'Current model only'
ModelRefByModelRefVerif: 0O
CxxVerificationSettings: 'PrjConfig'’

Run Polyspace on WhereAreTheErrors_v2 using the configuration
options object that you created:

pslinkrun('WhereAreTheErrors_v2', config);

Open the results in the Polyspace environment:

PolySpaceViewer ('WhereAreTheErrors_v2');

The analysis results of WhereAreTheErrors_v2 appear in the Polyspace
Results Manager.

See Also pslinkoptions | pslinkrun | PolyspaceAnnotation

Concepts e “MATLAB Functions for Polyspace Batch Runs”

6-24

	toc
	Reference Concepts
	Bug Finder Defect Categories
	Numerical
	Static Memory
	Dynamic Memory
	Programming
	Data-flow
	Other

	Option Descriptions for C Code
	Batch
	Settings
	Command-Line Information

	Add to results repository
	Settings
	Dependency
	Command-Line Information

	Other
	-extra-flags
	-c-extra-flags
	-cfe-extra-flags
	-il-extra-flags

	Target operating system
	Target processor type
	Generic target options
	-little-endian
	-big-endian
	-default-sign-of-char [signed|unsigned]
	-char-is-16bits
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]
	-align 32 (Default)
	-align 16
	-align 8

	Dialect
	Settings
	Tips
	Command-Line Information
	See Also

	Sfr type support
	Division round down
	Enum type definition
	Signed right shift
	Preprocessor definitions
	Undefined preprocessor definitions
	Code from DOS or Windows file system
	Command/script to apply to preprocessed files
	Include
	Multitasking
	Entry points
	Critical section details
	Temporally exclusive tasks
	MISRA C rules configuration
	MISRA AC AGC rules configuration
	Check custom rules
	Files and folders to ignore
	Effective boolean types
	Allowed pragmas
	Command/script to apply after the end of the code analysis
	Generate report
	Settings

	Report template name
	Settings
	Tip
	Command-Line Information

	Output format
	Settings
	Command-Line Information

	Find defects
	Settings
	Command-Line Information

	Option Descriptions for C++ Code
	Other
	-cpp-extra-flags flag
	-il-extra-flags flag

	Target processor type
	Generic target options
	-little-endian
	-big-endian
	-default-sign-of-char [signed|unsigned]
	-char-is-16bits
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]
	-align 16
	-align 8

	Dialect
	Pack alignment value
	Import folder
	Ignore pragma pack directives
	Support managed extensions
	Enum type definition
	Management of scope of 'for loop' variable index
	Management of w_char_t
	Set wchar_t to unsigned long
	Set size_t to unsigned long
	Overcome link error
	Main entry point
	Entry points
	Critical section details
	Check MISRA C++ rules
	MISRA C++ rules configuration
	Check JSF C++ rules
	JSF C++ rules configuration
	Files and folders to ignore

	Command Line Only Options
	-sources-list-file
	-v | -version
	-h[elp]
	-prog
	Settings
	Command-Line Information

	-date
	Settings
	Tip
	Command-Line Information

	-lang
	Settings
	Command-Line Information

	-author
	Settings
	Command-Line Information

	-results-dir
	-sources
	-I
	-import-comments
	-tmp-dir-in-results-dir
	-less-range-information
	-no-pointer-information
	-asm-begin -asm-end
	-permissive
	-Wall
	-report-output-name
	Settings
	Command-Line Information

	-max-processes
	Command-Line Information

	-scheduler
	Command-Line Information

	Checks
	Functions

